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Personalized news?

Repeatedly: 

1. Observe features of user+articles

2. Choose a news article.

3. Observe click-or-not

Goal: Maximize fraction of clicks



Health advice?

Repeatedly: 

1. Observe features of user+advice

2. Choose an advice.

3. Observe steps walked

Goal: Healthy behaviors (e.g. step count)



Other Real-world Applications

News Rec: [LCLS ‘10]

Ad Choice: [BPQCCPRSS ‘12]

Ad Format: [TRSA ‘13]

Education: [MLLBP ‘14]

Music Rec: [WWHW ‘14]

Robotics: [PG ‘16]

Wellness/Health: [ZKZ ’09, SLLSPM ’11, NSTWCSM ’14, PGCRRH ’14, NHS ’15, KHSBATM ‘15, 

HFKMTY ’16]
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How much reward is good?

ÅNeed a benchmark for comparison to our cumulative rewards

ÅMAB: Compare with the best fixed action in hindsight

ÅTacit assumption: A fixed action gets high rewards across all contexts 

Åe.g. same treatment to each patient, irrespective of their symptoms!

ÅEXP4: Comparison with best expert

ÅGood benchmark if we have a good expert



Policies

Policy maps features to actions.  
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Hidden
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acts.
¶chosen action = prediction of a classifier on the context 

Use policies to pick actions in CB



How much reward is good?

ÅCB: Compare with the best fixed policy in a policy class

ÅTacit assumption: There is a policy which attains high reward in the class

ÅPick an expressive class of policies to capture complex behaviors

ÅAllows taking different good actions on different contexts

ÅLimiting to a class restricts complexity for learning, like a hypothesis/concept class 
in supervised learning
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Connection to other learning settings

ÅMAB: Different benchmark makes CB harder and more useful

ÅSupervised learning: Wait for next lecture

ÅReinforcement learning: Actions do not have long-term consequences on future 
contexts and rewards in CB.
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