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Outline

 Basics: “discrete” probability

 Basics: “continuous” probability

 Concentration inequalities



 Experiment: e.g.: toss a coin twice

 Sample space: possible outcomes of an experiment

➢ S = {HH, HT, TH, TT}

 Event: a subset of possible outcomes

➢ A={HH}, B={HT, TH}

➢ complement ഥ𝑨={HT, TH, TT}

➢ disjoint (mutually exclusive) events: if A∩B= ∅.

 Shorthand:

➢ AB for A∩B

 For now: assume finite #outcomes

Random events



 Probability of an outcome 𝒖: 
a number assigned to 𝑢, Pr 𝑢 ≥ 0

➢ Two coin tosses: {HH, HT, TH, TT}
each outcome has probability ¼. 

➢ Axiom: σ𝑢∈𝑆 Pr(𝑢) = 1

 Probability of an event 𝑨 ⊂ 𝑺: 
a number assigned to event: Pr 𝐴 = σ𝑢∈𝐴 Pr(𝑢)

 Probability space:

➢ sample space S 

➢ probability Pr(𝑢) for each outcome 𝑢 ∈ 𝑆

Definition of Probability 



Joint Probability

 For events A and B, 

joint probability Pr(AB) (also written as Pr(A ∩ B)) 

is the probability that both events happen.

 Example: A={HH}, B={HT, TH}, 

what is the joint probability Pr(AB)? 

Zero

A B



Independence

 Two events A and B are independent if

Pr(AB) = Pr(A) Pr(B)

“Occurrence of 𝐴 does not affect the probability of 𝐵”

➢ Prop: Pr(ഥ𝑨B)=Pr(ഥ𝑨) Pr(B)

➢ Proof: Pr(AB)+Pr(ഥ𝑨B)=Pr(B)

Pr(ഥ𝑨B) = Pr(B)-Pr(AB) 

= Pr(B)-Pr(A) Pr(B)

= Pr(B) (1-Pr(A)) = Pr(B) Pr(ഥ𝑨).

 Events {Ai} are mutually independent in case

Pr( ) Pr( )i iii
A A

A B



Independence: examples

 Recall A and B are independent if Pr(AB) = Pr(A)Pr(B)

 Example: Medical trial

4000 patients

➢ choose one patient

unif. at random: each patient chosen w/prob 1/4000

➢ A = {the patient is a Woman}

B = {drug fails}

➢ Is event A be independent from event B ? 

➢ Pr(A)=0.5, Pr(B)=0.5, Pr(AB)=9/20

Women Men

Success 200 1800

Failure 1800 200

A B



Independence: examples

 Consider the experiment of tossing a coin twice

 Examples: is event A independent from event B?

➢ A = {HT, HH}={Coin1=H},  B = {HT}

➢ A = {HT}, B = {TH}

 Disjoint  Independence

 If A is independent from B, B is independent from C, 

is A independent from C?

Not necessarily, say A=C

A B



 If A and B are events with Pr(A) > 0, 

conditional probability of B given A is

 Example: medical trial

 If A is independent from B, Pr(A|B)= P(A)

Conditional probability

Pr( )
Pr( | )

Pr( )

AB
B A

A


Women Men

Success 200 1800

Failure 1800 200

Choose one patient at random

A = {Patient is a Woman}

B = {Drug fails}

Pr(B|A) = 18/20

Pr(A|B) = 18/20



Conditional Independence

 Event A and B are conditionally independent given C if 

Pr(AB|C) = Pr(A|C) Pr(B|C)

 Events {Ai} are conditionally mutually independent given C if

Pr ∩𝑖 𝐴𝑖 𝐶 = Π𝑖 Pr(𝐴𝑖|𝐶)



Conditional Independence (cont’d)

 Example: three events A, B, C

➢ Pr(A) = Pr(B) = Pr(C) = 1/5
Pr(AC) = Pr(BC) = 1/25, Pr(AB) = 1/10
Pr(ABC) = 1/125

➢ Are A, B independent?1/5*1/5  1/10

➢ Are A, B conditionally independent given C?

Pr(A|C)= (1/25)/(1/5)=1/5, 
Pr(B|C)=  (1/25)/(1/5)=1/5

Pr(AB|C)=(1/125)/(1/5)= 1/25= Pr(A|C)Pr(B|C)  

 A and B are independent 
 A and B are conditionally independent

A

CB



Random Variable

 Experiment: e.g.: toss a coin twice

➢ sample space 𝑆 and probability Pr(⋅)

 A random variable 𝑋 assigns a number to every outcome

➢ 𝑋 = #heads

➢ “function from sample space to numbers”

➢ shorthand: RV for “random variable”

 Distribution of 𝑋 assigns probability Pr(𝑋 = 𝑥) to every 𝑥 ∈ ℜ

➢ probability mass function (pmf) 𝑓𝑋 𝑥 = Pr(𝑋 = 𝑥)

 Support of 𝑋 is the set of all 𝑥 ∈ ℜ for which 𝑓𝑋(𝑥)> 0



Random Variable: Example

 Experiment: three rolls of a die. 

Let X be the sum of #dots on the three rolls.

What are the possible values for X?

 Pr(X = 3) = 1/6*1/6*1/6=1/216, 

 Pr(X = 5) = ?



Expectation 

 Expectation of random variable 𝑋

➢ weighted average of numbers in the support

 Nice properties:

➢ 𝐸 𝑐 = 𝑐 for any constant 𝑐.

➢ Additive: 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

➢ Linear: 𝐸 𝛼𝑋 = 𝛼 𝐸[𝑋] for any 𝛼 ∈ ℜ

➢ Monotone: if 𝑋 ≤ 𝑌 with prob. 1, then 𝐸 𝑋 ≤ 𝐸[𝑌]

[ ] Pr( )
x

E X x X x 



Conditional expectation

 Conditional expectation of RV 𝑋 given event 𝐴:

𝐸 𝑋|𝐴 = ෍

𝑥∈suport

𝑥 Pr 𝑋 = 𝑥 𝐴)

➢ same formula as 𝐸[𝑋], but with conditional probabilities

 = expectation of 𝑋 in a “conditional” probability space

➢ same sample space as before

➢ all probabilities conditioned on 𝐴

 same nice properties as before



Variance 

 Variance of RV X:

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2 = 𝐸 𝑋2 − 𝐸 𝑋 2

➢ characterizes how much 𝑋 spreads away from its expectation

 Nice properties:

➢ 𝑉𝑎𝑟 𝑋 ≥ 0

➢ 𝑉𝑎𝑟 𝑋 + 𝑐 = 𝑉𝑎𝑟(𝑋) for any constant 𝑐

➢ 𝑉𝑎𝑟 𝛼 𝑋 = 𝛼2 𝑉𝑎𝑟(𝑋) for any 𝛼 ∈ ℜ

 standard deviation 𝜎 𝑋 = 𝑉𝑎𝑟(𝑋)

 NB: variance can be infinite!

➢ 𝑋 = 2𝑖 with probability 2−𝑖, for each 𝑖 = 1,2,3,… .



Uniform distribution

 choose “uniformly at random” (u.a.r.)

➢ sample space: 𝐾 items

➢ same probability 
1

𝐾
for each item.

 (discrete) uniform distribution 

➢ random variable 𝑋 can take 𝐾 possible values

➢ all values have the same probability 
1

𝐾



Bernoulli & Binomial 

 Bernoulli distribution 

➢ success  with probability 𝑝, failure otherwise

➢ Bernoulli RV 𝑋 (a.k.a. 0-1 RV):

Pr 𝑋 = 1 = 𝑝 and  Pr 𝑋 = 0 = 1 − 𝑝

➢ E[X] = p,  Var(X) = E[X2]-E[X]2 =p-p2

 Binomial distribution

➢ 𝑋 = #successes in n draws of a Bernoulli distribution

➢ 𝑋𝑖~Bernoulli(p),  𝑖 = 1 …𝑛
𝑋 = σ𝑖=1

𝑛 𝑋𝑖,   X~Bin(p, n)

➢ E[X] = np, Var(X) = np(1-p)



Independent RVs

 Two random variables 𝑋 and 𝑌 on the same experiment

➢ outcomes of two coin tosses

 Joint distribution:  𝑓𝑋,𝑌 𝑥, 𝑦 = Pr(𝑋 = 𝑥, 𝑌 = 𝑦)

 𝑋 and 𝑌 are independent if for all 𝑥, 𝑦 ∈ ℜ
𝑓𝑋,𝑌 𝑥, 𝑦 = Pr 𝑋 = 𝑥 Pr(𝑌 = 𝑦)

➢ equiv.: if events {𝑋 = 𝑥} and {𝑌 = 𝑦} are independent

 Basic properties:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌

Var(X+Y)=Var(X)+Var(Y)

 RVs 𝑋, 𝑌, 𝑍, … mutually independent if 
Pr 𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧,… = Pr 𝑋 = 𝑥 Pr 𝑌 = 𝑦 Pr 𝑍 = 𝑧 …

 Shorthand: IID for “independent and identically distributed”
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Infinitely many outcomes 

 experiments can have infinitely many outcomes

➢ all finite sequences of coin tosses

➢ countably many outcomes => same treatment as before

 experiments can have “continuously” many outcomes

➢ throw a dart randomly into a unit interval

Outcomes: all numbers in 0,1

➢ infinite sequence of coin tosses

Outcomes: infinite binary sequences

 Sample space 𝑆: set of all possible outcomes

➢ Events: subsets of S

 Probabilities assigned to events, not to individual outcomes!



Pr( ) Pr( )i iii
A A

 Probability of an event : a number assigned to event Pr(A)

➢ Axiom 1: 0<= Pr(A) <= 1

➢ Axiom 2: Pr(S) = 1, Pr(∅)= 0

➢ Axiom 3: For any two events A and B, 
Pr(A∪B)= Pr(A)+Pr(B)-Pr(AB)

 Corollaries

➢ Pr(ഥ𝑨)= 1- Pr(A) 

➢ For every sequence of disjoint events 

Definition of Probability

A B



 Probability space consists of three things:

➢ sample space S 

➢ set of events ℱ (where each event is s subset of S)

➢ probability Pr(𝐴) for each event 𝐴 ∈ ℱ

 ℱ is the set of events that “we care about”

➢ OK to care about some, but not all events
(ℱ does not have to include all events)

➢ ℱ must satisfy some formal properties (“𝜎-algebra”)
to make probability well-defined

Probability space



Random variable X

 Experiment: infinite sequence of coin tosses

➢ sample space: infinite binary sequences (𝑏1, 𝑏2, … )

 A random variable 𝑋 assigns a number to every outcome

➢ 𝑋 = 0. 𝑏2𝑏4𝑏6 … ∈ [0,1]

➢ “function from sample space to numbers”

 Distribution of 𝑋: assigns probability to every interval:
Pr(𝑎 ≤ 𝑋 ≤ 𝑏)

➢ cumulative distribution function (cdf)

𝐹𝑋 𝑥 = Pr(𝑋 ≤ 𝑥)



Continuous vs discrete

 “Continuous” random variable 𝑋:

➢ each possible value happens with zero probability

➢ “throw a dart randomly into a unit interval”

 “Discrete” random variable 𝑌:

➢ each possible value happens with positive probability

➢ #heads in two coin tosses

➢ NB: may happen even if #outcomes is infinite, e.g.:

Pr(𝑌 = 𝑖) = 2−𝑖 , 𝑖 = 1,2,3,…

 RVs can be neither “continuous” nor “discrete”! E.g., max(X,Y)



Probability density function (pdf)

 Pdf for random variable 𝑋 is a function 𝑓𝑋(𝑥) such that

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓𝑋 𝑥 𝑑𝑥

➢ not guaranteed to exist (but exists in many useful cases)

 Support of 𝑋 = {all x such that 𝑓𝑋 𝑥 > 0}

➢ How to define “support” if pdf does not exist? E.g.:

• 𝑌 is discrete random variable, and 

𝑍 = 𝑋 with probability ½ , and 𝑍 = 𝑌 otherwise.

• Then support(𝑍) = support(𝑋) ∪ support(𝑌)



Expectation

 If pdf 𝑓𝑋 exists, then expectation is

𝐸 𝑋 = න
−∞

∞

𝑥 ⋅ 𝑓𝑋 𝑥 𝑑𝑥

 General definition (for any random variable)

➢ Lebesgue integral of 𝑋 with respect to measure Pr(⋅)

➢ no need to know what it is, for this course

 Same nice properties as in the discrete case



Uniform distribution

 Informally:

➢ “ Throw a random dart into an interval [𝑎, 𝑏] ”

➢ “ each number has the same probability ”

 Formally:

➢ sample space: all numbers in 𝑎, 𝑏

➢ probability density function: 𝑓𝑋 𝑥 = 1/(𝑏 − 𝑎)

➢ equivalently:
Pr 𝑎′ ≤ 𝑋 ≤ 𝑏′ = (𝑏′ − 𝑎′)/(𝑏 − 𝑎)

for every interval 𝑎′, 𝑏′ ⊂ [𝑎, 𝑏]



Independent RVs

 Two random variables 𝑋 and 𝑌 on the same experiment

➢ “ two throws of a dart into a unit interval ”

 Joint distribution of X and Y

assigns probability Pr(𝑋 ∈ 𝐼, 𝑌 ∈ 𝐽), for any two intervals 𝐼, 𝐽

 𝑋 and 𝑌 are independent if for all intervals 𝐼, 𝐽
Pr 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = Pr 𝑋 ≤ 𝑥 Pr(𝑌 ≤ 𝑦)

➢ equivalently: if events {𝑋 ≤ 𝑥} and {𝑌 ≤ 𝑦} are independent

 Random variables 𝑋, 𝑌, 𝑍, … mutually independent if 
Pr 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦, 𝑍 ≤ 𝑧,… = Pr 𝑋 ≤ 𝑥 Pr 𝑌 ≤ 𝑦 Pr 𝑍 ≤ 𝑧 …



Normal (Gaussian) Distribution
 Random variable 𝑋~𝑁(𝜇, 𝜎2) defined by pdf 

𝑓𝑋 𝑥 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2

➢ two parameters: expectation 𝜇 and variance 𝜎2

➢ “standard normal distribution”: 𝑁(0,1)

 Nice properties:

➢ If X1~N(1,
2

1) and X2~N(2,
2

2) are independent,

then  X1+X2~N(1+2, 
2

1 + 2
2)

➢ Central Limit Theorem (informally):

If 𝑌1, … , 𝑌𝑛 are IID RVs with finite variance, 

their average converges to a normal distribution as 𝑛 → ∞
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Concentration inequalities

 Setup: 𝑋1, … , 𝑋𝑛 independent random variables.

(not necessarily identically distributed)

ത𝑋 =
𝑋1+⋯+𝑋𝑛

𝑛
is the average,  and 𝜇 = 𝔼[ ത𝑋]

 Strong Law of Large Numbers:

Pr ത𝑋→
𝑛
𝜇 = 1

Want: ത𝑋 is concentrated around 𝜇 when 𝑛 is large,

i.e. that | ത𝑋 − 𝜇| is small with high probability.

➢ Pr ത𝑋 − 𝜇 ≤ "small" ≥ 1 − "small"

➢ such statements are called “concentration inequalities”



Hoeffding Inequality (HI)

 High-prob. event: ℰ𝛼,𝑇 = ത𝑋 − 𝜇 ≤
𝛼 log 𝑇

𝑛
, 𝛼 ≥ 0

HI: Assume 𝑋𝑖 ∈ [0,1] for all 𝑖. Then

Pr( ℰ𝛼,𝑇) ≥ 1 − 2𝑇−2𝛼.

➢ 𝛼 = 2 suffices for most applications in this course.

T controls probability; can be the time horizon in MAB

➢ this is a convenient re-formulation of HI for our purposes

more “flexible” and “generic” formulation exists

 “Chernoff Bounds”: special case when 𝑋𝑖 ∈ {0,1}

 Relevant notation:    𝑟 =
𝛼 log 𝑇

𝑛
“confidence radius

[𝜇 − 𝑟, 𝜇 + 𝑟 ] “confidence interval”



Hoeffding Inequality (extensions)

 Recall: ℰ𝛼,𝑇 = ത𝑋 − 𝜇 ≤
𝛼 log 𝑇

𝑛
, 𝛼 ≥ 0

 “HI for intervals”: Assume 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] for all 𝑖. Then 

Pr(ℰ𝛼𝛽, 𝑇) ≥ 1 − 2𝑇−2𝛼, where 𝛽 =
1

𝑛
σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2.

 “HI for small variance”:

Assume 𝑋𝑖 ∈ [0,1] and 𝑉𝑎𝑟 𝑋𝑖 ≤ 𝑣 for all 𝑖. Then

Pr ℰ𝛼𝑣, 𝑇 ≥ 1 − 2𝑇−𝛼/4.

as long as 𝑛 is large enough: 
𝑛

log 𝑛
≥

𝛼

9𝑣
.

 “HI for Gaussians”:

Assume 𝑋𝑖 is Gaussian with variance ≤ 𝑣.Then 

Pr ℰ𝛼𝑣, 𝑇 ≥ 1 − 2𝑇−𝛼/2.



Concentration for non-independent RVs

 Setup: 𝑋1, … , 𝑋𝑛 random variables in [0,1]

(not necessarily independent or identically distributed)

ത𝑋 =
𝑋1+⋯+𝑋𝑛

𝑛
is the average 

 Assume: there is a number 𝜇𝑖 ∈ [0,1] such that 

𝐸 𝑋𝑖 𝑋1 ∈ 𝐽1, … , 𝑋𝑖−1 ∈ 𝐽𝑖−1 = 𝜇𝑖

for any intervals 𝐽1, … , 𝐽𝑖−1 ⊂ ℜ.

 Let ℰ𝛼 = ത𝑋 − 𝜇 ≤
𝛼 log 𝑇

𝑛
, 𝛼 ≥ 0

 Then    Pr ℰ𝛼,𝑇 ≥ 1 − 2𝑇−𝛼/2

 If 𝜇1 = ⋯ = 𝜇𝑛 = 0, 

sequence (𝑋1, … , 𝑋𝑛) is called a martingale

for each 

𝑖 = 1,… , 𝑛

𝜇 = (𝜇1 +⋯+ 𝜇𝑛)/𝑛

Follows from Azuma-

Hoeffding inequality



Union bound

Setup: finite or countable set of events 𝐴1, 𝐴2, …

Then Pr 𝑖ڂ 𝐴𝑖 ≤ σ𝑖 Pr[𝐴𝑖]



Resources

 A survey on concentration inequalities

by Fan Chung and Linyuan Lu (2010)

 Another survey on concentration inequalities

by Colin McDiarmid (1998).

Wikipedia

➢ Hoeffding inequality

➢ Azuma-Hoeffding inequality

http://www.math.ucsd.edu/~fan/complex/ch2.pdf
http://www.stats.ox.ac.uk/__data/assets/pdf_file/0017/4139/montpelierconc.pdf
https://en.wikipedia.org/wiki/Hoeffding's_inequality
https://en.wikipedia.org/wiki/Azuma's_inequality

