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In this lecture, we will introduce reinforcement learning. Reinforcement learning (RL) is a strict generalization of
the contextual bandit (CB) problem. Like CBs, it consists of a sequential interaction between the learning agent and
its environment. Unlike CBs, the agents actions have long-term consequences now. That is, the actions influence
now only the reward acquired at the current time-step, but also influence the distributions over future rewards which
an agent might acquire. We will first present the basic setup of the general RL problem now, before discussing the
questions of interest and solutions to them.

10.1 Problem Setup

At each round t = 1, 2, . . . ,:

1. Environment reveals the current state st ∈ S.

2. Learner chooses an action at ∈ A.

3. Environment reveals a reward rt ∈ [0, 1] and draws
the next state st+1 based on at.

Figure 10.1: The repeated interaction between the environment and a learning agent in the reinforcement learning
problem

The basic interaction between a learning agent and its environment is described in Figure 10.1. As we can see, this
bears some similarities and differences to the corresponding interaction in CBs (Figure 6.1). One key difference is the
notion of a state. States can be thought of a bit like contexts in CBs. One important difference is that when the agent
takes an action at, it influences not just the current reward, but also the future state st+1. Consequently, a poor action
at the current time-step can not only result in a low reward rt, but also place us in a future state st+1 from which no
significant rewards are possible in thereafter! At the first glance, this dependence of the future state on the agent’s
actions might appear similar to adversarial CBs, where the adversary can choose future contexts based on the current
action. However, we will next introduce the learning setting formally, whence the distinctions will be clearer.

Definition 10.1 (Episodic Markov Decision Process (MDP)) An Episodic Markov Decision Process (MDP) M is
parametrized by the tuple (S,A,R,Γ, ν,H) where S denotes the state space and A denotes the action space. The
initial state is drawn as s1 ∼ µ, while the corresponding states obey st+1 ∼ Γ(s|st, at). The instataneous rewards
are drawn according to rt ∼ R(st, at). The entire loop in Figure 10.1 repeats for H steps, for a fixed horizon H after
which the process ends.
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Remark: The decision process is called Markovian as the reward rt only depends on st and at, as does the future
state st+1. Consequently, given the current state st of an agent, the prior actions a1, . . . , at−1 which it took to reach st
do not matter to the future. This is distinct from non-Markovian processes where the entire path followed to st might
matter in the future.

The learning goal in an MDP consists of maximizing the cumulative reward. Given a policy π : S 7→ ∆(A), which
maps states to distributions over actions, we define the value of π as

V (π,M) = E(s1,a1,r1,...,sH ,aH ,rH)∼M,π[r1 + . . .+ rH ], (10.1)

where the notation (s1, a1, r1, . . . , sH , aH , rH) ∼M,π refers to the states s1 ∼ ν, st+1 ∼ Γ(s|st, at), rt ∼ R(st, at)
and at ∼ π(st) for all t = 1, 2, . . . ,H . That is, the notation referes to all the actions chosen according to π, while
the remaining quantities are drawn based on the MDP M given these actions. Often, the policies π we consider are
non-stationary, that is, the action at depends both on st and the time-step t. In such a case, we formally think of a
non-stationary policy π as a sequence of mappings π1, . . . , πH with at ∼ πt(st).

The learning goal of the agent is to find a non-stationary policy π which maximizes the value, that is, π?M =
arg maxV (π,M). When the MDP M in consideration is clear from the context, we will suppress the argument
M for conciseness.

Example 1 (Navigation) Navigation is perhaps the simplest to see example of RL. The state of the agent is their
current location. The four actions might be moving 1 step along each of east, west, north or south. The transitions
in the simplest setting are deterministic. Taking the north action moves the agent one step north of their location,
assuming that the size of a step is standardized. The agent might have a goal state g they are trying to reach, and the
reward is 0 until the agent reaches the goal, and 1 upon reaching the goal state. Since we are in an episodic setting
with length H episodes, we also need to define what happens if the agent reaches a goal at a step t < H , and we can
imagine that they transition to a no-op state s0 from g with probability 1 irrespective of the action, which does not
accrue any further rewards. Alternatively, there can be a self-loop at g which means the agent keeps getting a reward
of 1 every time step they take this self-loop. This second formulation would mean that the agent gets a higher reward
by getting to g faster.

In the above versions, the agent gets no intermediate feedback on the quality of their actions till they get to the goal
state. A more helpful setting might be one of reward shaping, where the agent gets a reward after every action based
on their distance from the goal state. Note however, that we have to exercise care while doing this in an episodic
setting. Suppose we say simply that the reward is equal to negative of the number of steps from the goal, there is a
large positive reward for getting to the goal and the agent transitions to a state s0 from g getting no future reward
using a stop action, or can move to any of the neighboring locations using the standard movement actions. Then an
optimal agent quickly gets to the goal, then takes a step away from the goal in any direction getting a small negative
reward, followed be returning to g to get the positive reward again and so on. The lesson is that designing a numerical
reward function such that the optimal policy under it has the intuitively desirable behavior can be quite non-trivial in
practice.

Navigation is a good example in that it is clearly beyond CB. The agent’s next location is integrally dependent on the
previous one, and getting to a target location which yields rewards cannot be achieved by a single action, but requires
a carefully planned sequence of actions.

Example 2 (Conversational agent) This is another fairly natural RL problem. The state of an agent can be the
current transcript of the conversation so far, along with any additional information about the world, such as the
context for the conversation, characteristics of the other agents or humans in the conversation etc. Actions depend
on the domain. In the rawest form, we can think of it as the next statement to make in the conversation. Sometimes,
conversational agents are designed for task completion, such as travel assistant or tech support or a virtual office
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Figure 10.2: An example illustrating difference between RL and CBs. There are 3 states. Action a in state s1
transitions to state g with probability 1, while a′ in s1 transitions to b. There is only one available action in each of g
and b which just loops back to the same state, with a reward of 1 at each step for g and 0 for b.

receptionist. In these cases, there might be a predefined set of slots which the agent needs to fill before they can find
a good solution. For instance, in the travel agent case, these might correspond to the dates, source, destination and
mode of travel. The actions might correspond to natural language queries to fill these slots.

In task completion settings, reward is naturally defined as a binary outcome on whether the task was completed or not,
such as whether the travel was successfully booked or not. Depending on the domain, we could further refine it based
on the quality or the price of the travel package found. In more generic conversational settings, the ultimate reward is
whether the conversation was satisfactory to the other agents or humans, or not.

Example 3 (Board games) This is perhaps the most popular category of RL applications, where RL has been suc-
cessfully applied to solve Backgammon, Go and various forms of Poker. For board games, the usual setting consists of
the state being the current game board, actions being the potential next moves and reward being the eventual win/loss
outcome or a more detailed score when it is defined in the game.

RL versus Contextual Bandits: We can now more crisply draw the distinction between RL and CB. In RL, we
measure each policy based on VM (π). Crucially, the states s2, . . . , sH have different distributions depending on the
actions chosen by the policy π. In CB, we evaluate each policy π under the same distribution on contexts and rewards.
Even when this distribution is adversarially generated in response to the algorithm, we then freeze these adversarial
contexts and rewards and evaluate every policy for this sequence. As an extreme example, consider the example MDP
shown in Figure 10.2. Here we have just 3 states, with 2 actions in the first state and just one action in the remaining
states. There is no reward received for either choice of the action a1. If the agent chooses the action leading to the good
state g, then the reward is 1 for the remaining H − 1 steps, and 0 otherwise. In this case, a policy which transitions to
the bad state b on the first step has a value of 0, while a policy transitioning to g has a value of H − 1. In a contextual
bandit setting though, if the algorithm were to act in the same environment, and transition to the state b on the first
step, then it obtains a cumulative reward of 0. But any other policy evaluated on this distribution of rewards also gets
a reward of only 0, meaning that the algorithm would be considered optimal under the contextual bandit notion of
regret!

Finite versus infinite horizons: The way we have defined an MDP is episodic, that is the interaction between the
learner and environment proceeds in episodes of a finite length H . An alternative definition of MDPs consists of the
infinite horizon setting, which can be thought of as Definition 10.1 with H = ∞. Since the cumulative reward can
be infinite in such settings, people typically consider a discounted reward, where a discount factor γ ∈ (0, 1) is used
to trade-off the reward in the current time-step with what we might obtain in the future. We will not discuss this
discounted, infinite horizon setting in the lecture, and refer the students to a standard text such as Puterman [1994] for
the corresponding definitions.
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States versus contexts: States appear to play a similar role in RL as contexts do in CB. That is, the agent perceives
the state and takes actions based on it. However, the notion of a state in typical RL literature carries some more
meaning to it, in that states are typically viewed as sufficient statistics to summarize the entire preceding trajectory.
Thus the context in CB is usually a modeling choice. We can choose to put more information or different features
in a context, which leads to a different type of policy. States in RL are often a property of the problem, and we base
our policies on states since they contain all the information required to choose the right action. Finally, we think
of contexts as high-dimensional vectors in CB. Often in RL, and definitely in this lecture, we will think of states as
discrete and small in number. That is, S will be assumed to be a set of small cardinality. This will also be reflected in
our desire to find the best policy from all possible mappings of states to actions, rather than worrying about restricted
policy classes which can be used to generalize across contexts. When the policy is maintained as a table prescribing
an action for each state explicitly, the representation is called tabular.

10.2 Value functions

A central notion in reinforcement learning is that of value functions. Let us consider a non-stationary policy π (that is,
a sequence of policies π1, π2, . . . , πH ). Then we define the value functions:

V πt (s,M) = E(st,at,rt,...,sH ,aH ,rH)∼M,π[

H∑
τ=t

rτ |st = s], and

Qπt (s, a,M) = E(st,at,rt,...,sH ,aH ,rH)∼M,π[

H∑
τ=t

rτ |st = s, at = a]. (10.2)

In words, V πt (s,M) refers to the expected cumulative reward that the agent can obtain by starting in state s at time
step t and following the policy π for the subsequent steps. Clearly our previous definition V (π,M) coincides with
Es∼ν [V π1 (s)], with the MDP M being implicit. Similarly, the Qπt (s, a,M) function captures the expected cumulative
reward obtained by taking a in state s at time t, and following π thereafter. Once again, we will generally suppress the
dependence on M when it is clear from the context.

One important property of these value functions is that they can be recursively defined. Indeed, based on our defini-
tions, it is easily checked that we have for any non-stationary policy π and any time step t = 1, 2, . . . ,H ,

V πt (s,M) = E(st,at,rt,st+1)∼M,π[rt + V πt+1(st+1,M)|st = s]

= E(st,at,rt,st+1,at+1)∼M,π[rt +Qπt+1(st+1, at+1,M)|st = s] (10.3)

Qπt (s, a,M) = E(st,at,rt,st+1)∼M,π[rt + V πt+1(st+1,M)|st = s, at = a]

= E(st,at,rt,st+1,at+1)∼M,π[rt +Qπt+1(st+1, at+1,M)|st = s, at = a], (10.4)

where we define V πH+1(s) = QπH+1(s, a) = 0 for all s, a, π. The correspondence of this definition with the earlier
ones (10.2) can be seen inductively. The two clearly coincide when t = H , since we just count the expected instanta-
neous reward. Assuming that the two definitions agree for all t = H, . . . , τ , showing that they hold for τ − 1 is easy
as well as we are just unfolding the sum.

The recursive definitions are handy because they suggest an obvious algorithm to compute V πt andQπt , if we are given
an MDP M and a policy π. We can simply use dynamic programming where we start from the easily computed t = H ,
and then back-up these values one level by adding in the rewards at the previous step.

So far, we have defined the notions of value, given a policy π. Of course, our goal is to find the best possible policy.
As mentioned previously, we will consider all possible mappings from states to actions as policies. Formally, our goal
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is to find π? = (π?1 , . . . , π
?
H) which maximizes V (π,M). The V and Q functions associated with π? are referred to

as V ? and Q? respectively. That is, we use V ?t (s,M) to denote the largest possible cumulative reward in the MDP
M , when we are in state s at time t. Similarly, Q?t (s, a,M) is the largest cumulative reward in M after taking action
a in state s and acting optimally thereafter. We now present recursive formulations for V ? and Q?, analogous to our
earlier definitions of V π and Qπ .

Theorem 10.2 (Bellman Optimality Equations) Let V ?t and Q?t be the value functions corresponding to an optimal
policy π?. Then we have the following relations

V ?t (s,M) = max
a∈A

E(st,at,rt,st+1)∼M [rt + V ?t+1(st+1,M)|st = s, at = a]

Q?t (s, a,M) = E(st,at,rt,st+1)∼M [rt + V ?t+1(st+1,M)|st = s, at = a]

Proof: The proof follows by induction, along with the fact that our policies have a tabular structure. We present the
proof for V ? here, with the argument being extremely similar for Q? as well. Starting with the base case at level H ,
we define V ?H+1 ≡ 0 for all states as before. V ?H(s,M) is defined as the expected reward achieved by following the
optimal policy at step H in state s. Since each policy has a tabular structure, we can choose the best action for state s
in step H , independently of the choices we make at other steps t or states s′. This implies that

V ?H(s,M) = max
a∈A

ErH∼M [rH |sH = s, aH = a],

which coincides with the assertion of the lemma at t = H . Now we assume that the lemma holds for s = H,H −
1, . . . , t+ 1, and establish it at s = t. By definition, we have

V ?t (s,M) = max
at,...,aH

E(st,a′t,rt,...,sH ,a
′
H ,rH)∼M

[
H∑
s=t

rs|st = s, a′s = as : s = t, . . . ,H

]

= max
at

E(st,a′t,rt)∼M

[
rt + max

at+1,...,aH
E(st+1,a′t+1,rt+1,...,sH ,a′H ,rH)

[
H∑

s=t+1

rs|a′s = as : s = t+ 1, . . . ,H

]
|st = s, a′t = at

]
= max

at
E(st,a′t,rt)∼M

[
rt + Es′ [V ?t+1(s′,M)]|st = s, a′t = at

]
.

Here the second equality uses the tabular structure of the policies strongly, by saying that having made optimal choices
for times t+1 throughH to obtain value V ?t+1, we just need to pick the action at greedily according to the instantaneous
reward and the best value from the next state.

Remark: The argument here is very dynamic programming like, and might be reminiscent of shortest path like
algorithms. Indeed, the recursion here is a generalization of the argument used in shortest path algorithms. The
shortest path from a point x to y is given by moving from x to the neighbor z which is closest to y.

From value functions to optimal policy: So far, we have seen how to compute the optimal value functions in an
MDP, but we would also like to know the optimal policy in order to take actions in the MDP. Given Q? or V ?, the
optimal policy is simply determined as

π?t (s) = max
a∈A

Q?t (s, a) = max
a∈A

E[r(a) + V ?(st+1)|st = s]. (10.5)

These equalities can again be seen to be inductively true. At step H , Q?(s, a) is simply the reward obtained by taking
action a in state s and π? simply picks the action with the largest immediate reward at the final step given the current
state, by the Markovian structure of the process and the tabular formulation of the policy class. Assuming that the
statement holds at all steps s = t + 1, . . . ,H , it also holds at step t by simply utilizing the recursive definition of Q?

in Theorem 10.2. Finally, the expression in terms of V ? follows from the definition of Q? in terms of V ?.
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10.3 Learning optimal behavior from samples

So far, we have seen how to compute the optimal policy and value functions given that we know everything about the
MDP, that is the reward and transition functions are known. But in practice, our learning agent can only act in the
MDP and experience the reward and transitions through states and rewards it perceives in response to its actions. And
we would like to learn an optimal behavior policy in an MDP, once the agent has experienced a large enough number
of trajectories.

As a natural starting point, we might attempt to treat RL as a more advanced type of a bandit problem, and try applying
existing bandit algorithms to find a good RL policy. The most natural idea is to take a CB algorithm and apply it with
the state as context in RL settings. However, as we discussed before, the notion of regret in CB is not strong enough
to imply meaningful guarantees in an RL setting.

We next present an algorithm for episodic RL based on the elegant approach of [Brafman and Tennenholtz, 2003],
which finds a near-optimal policy while requiring only a reasonable number of trajectories from the MDP. We call the
algorithm R-MAX-E, which is simply an episodic modification of the R-MAX algorithm in Brafman and Tennenholtz
[2003]. The algorithm, described in Algorithm 1 utilizes the same principle of optimism in the face of uncertainty
which inspires the UCB methods we have seen before. Concretely, the algorithm maintains an estimate of the transition
probabilities Γ(s′|s, a) for all the neighbors s′ of a state s, given an action a. It also estimates the reward R(s, a). Once
the algorithm has visited s adequately often to ensure that these estimates are all accurate, it declares the state as known.
Learning is complete when all the states are known. During a run of the algorithm, whenever it is in a known state, it
already knows the optimal action to take and follows this action. However, when the algorithm is in an unknown state,
it explores by picking the action chosen least often in the state so far.

Algorithm 1 R-MAX-E algorithm for sample efficient epsisodic reinforcement learning
Require: Parameter m to set known state.

Initialize the set of known states K = ∅, counters n1(s) = n(s, a) = n(s, a, s′) = 0 for all s, a, s′ ∈ S × A × S
and R(s, a) = 0.
for all episodes i = 1, 2, 3, . . . do

Let M̂ have ν̂(s) = n1(s)/i, Γ̂(s′|s, a) = n(s, a, s′)/n(s, a) and R̂(s, a) = R(s, a)/n(s, a).
Let M̂K be the induced MDP (see Definition 10.3) and πi = π?(M̂K) be the optimal policy in M̂K .
for t = 1, 2, . . . ,H do

Observe state st
If t = 1, then n1(s)+ = 1

If st ∈ K, choose at = π?(st, M̂K), else at = arg mina∈A n(s, a)
Receive reward rt
If st /∈ K, update n(st, at)+ = 1 and R(st, at)+ = rt
If st−1 /∈ K, update n(st−1, at−1, st)+ = 1

end for
If a state becomes known, i.e. n(s, a) ≥ m for all a ∈ A, update K = K ∪ {s}.

end for

In order to more concretely discuss the algorithm, we need some important definitions. Given an MDP M and a set K
of known states, we next define the notion of an Induced MDP.

Definition 10.3 (Induced MDP) Let M be an MDP parametrized by (S,A,RM ,ΓM , ν,H) with K ∈ S being a
subset of states. Based on this set, we define the induced MDP MK parametrized by (S,A,RMK

,ΓMK
, ν,H) in the

following manner. For each s ∈ K, we define

ΓMK
(s′|s, a) = ΓM (s′|s, a) and RMK

(s, a) = RM (s, a).
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For all the s /∈ K, we define

ΓMK
(s′|s, a) = 1(s′ = s) and RMK

(r|s, a) = 1(r = 1).

Thus, an induced MDP given a set K of known states is an optimistic process where we receive a reward of 1 (recall
that the rewards rt ∈ [0, 1] so that 1 is the largest attainable reward) no matter which action we try. Furthermore, once
we enter such an unknown state, we stay there and keep collecting this reward for the remainder of the episode. On
the known states, naturally the transition and reward distributions follow their known behavior.

Given the algorithm gives us some clues as to how exploration in RL is more sophisticated than the exploration in CB.
While we do explicitly perform less frequently chosen actions on unknown states as in bandits, we also choose actions
according to the policy πi in the known states. When we are in a known state, πi is still likely to favor actions which
lead to unknown states as those states have high values owing to our optimism. Consequently, exploration in RL is
not only about trying all actions given a state the agent is in, but systematically executing policies which lead to the
unknown parts of the state space, possibly over a long sequence of actions.

Note that R-MAX-E requires computing the optimal policy π?(M̂K), which can be done using the value iteration
scheme from the previous section since the transitions and rewards of M̂K are fully known.

We will now analyze the R-MAX-E algorithm, and provide a bound on the number of episodes before which it finds
an ε-optimal policy. We will prove the following theorem.

Theorem 10.4 For any 0 ≤ ε, δ < 1, with probability at least 1 − δ, the policy πi computed in episode i of the
R-MAX-E algorithm satisfies V (πi,M) ≥ V (π?,M)− ε once i is at least O

(
H4S3A
ε3 log2 S2A

δ

)
.

In order to prove the result, we will inttroduce a number of key concepts in understanding exploration in reinforcement
learning. We will present details of the new ideas, while discussing the more technical parts at a high-level. Throughout
the analysis, we will abuse our notationR to also refer to the expected reward, given a (state, action) pair.

We start with a basic result which was first introduced in Kearns and Singh [2002] under the name of a simulation
lemma.

Lemma 10.5 (Simulation lemma for episodic MDPs) Let M and M ′ be to MDPs with the same state and action
spaces. If the transition and reward functions of these MDPs satisfy∑
s′∈S
|ΓM (s′|s, a)− ΓM ′(s′|s, a)| ≤ ε1, ∀s ∈ S and a ∈ A, |RM (s, a)−RM ′(s, a)| ≤ ε2 ∀s ∈ S and a ∈ A.

Then for every non-stationary policy π, the two MDPs satisfy |V (π,M)− V (π,M ′)| ≤ Hε1 + H(H−1)
2 ε2.

The lemma is called a simulation lemma as it tells how much error we incur in evaluating policies if we build an
approximate simulator M ′ for the true process M .

Proof: We will show this lemma using the inductive hypothesis that for any state s, policy π and step t = 1, 2, . . . ,H ,
we have

|V πt (s,M)− V πt (s,M ′)| ≤ (H − t)ε1 +
(H − t)(H − t+ 1)

2
ε2.

At the step t = H , this is clearly true since the two value functions only differ in the reward at the final step, which
can vary by at most ε2. This establishes the base case.
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For the inductive step, we note that by the recursive formuation (10.4), we have

|V πt (s,M)− V πt (s,M ′)| =
∣∣Er,s′∼M,π[r + V πt+1(s′,M)]− Er,s′∼M ′,π[r + V πt+1(s′,M ′)]

∣∣
≤ ε2 +

∣∣∣∣∣∑
s′∈S

(
ΓM (s′|s, a)V πt+1(s′,M)− ΓM ′(s′|s, a)V πt+1(s′,M ′)

)∣∣∣∣∣
= ε2 +

∣∣∣∣∣∑
s′∈S

(
ΓM (s′|s, a)V πt+1(s′,M)− ΓM ′(s′|s, a)V πt+1(s′,M)

)∣∣∣∣∣
+

∣∣∣∣∣∑
s′∈S

(
ΓM ′(s′|s, a)V πt+1(s′,M)− ΓM ′(s′|s, a)V πt+1(s′,M ′)

)∣∣∣∣∣
≤ ε2 + (H − t)ε1 + (H − t− 1)ε2 +

(H − t− 1)(H − t)
2

ε1

= (H − t)ε2 +
(H − t)(H − t+ 1)

2
ε1.

Here the first inequality follows from triangle inequality and using the assumption on the reward functions betweenM
and M ′. The second inequality follows by noting that V πt (s′,M) ≤ H − t, since the individual rewards are in [0, 1]
so that the maximum cumulative reward from time t onwards is at most H − t.

The next lemma really formalizes our intuition that the optimal policy in the induced MDP encourages exploration
of the currently unknown states. We will show that either the best policy πi learned using the induced MDP at
an epsisode i is already good, or it has a high chance of taking us to an unknown state. We will use the notation
PπM [escape from K in an episode|s1 = s] to denote the probability of generating a trajectory (s, a1, r1, s2, a2, r2, . . . , sH , aH , rH)
where at ∼ πt(st) and st /∈ K for some t.

Lemma 10.6 (Induced inequalities) LetM be an MDP withK being the set of known states. LetMK be the induced
MDP (Definition 10.3) with respect to K and M . For any non-stationary policy π and state s ∈ S we have

V π(s,MK) ≥ V π(s,M) and V π(s,M) ≥ V π(s,MK)− PπM [escape from K in an episode|s1 = s].

The lemma has two implications. First it formalizes the notion that the induced MDP MK is indeed an optimistic
version of M , since it ascribes higher values to each state under every policy. At the same time, the optimism is not
uncontrolled. The values ascribed by MK to a policy π are higher only if the policy has a substantial probability of
visiting an unknown state, and hence is useful for exploration.

Proof: The first inequality is a direct consequence of the definition of MK . If s /∈ K, it is immediate since we get
the maximum reward of 1 at each time-step, while never leaving this state. If s ∈ K, then our immediate reward is
identical to that inM . At the next step, we either stay inK, or leave. If we leave then we will obtain the largest reward
for the remaining time steps. If we stay, we obtain the same reward as that in M . Thus we never obtain a smaller
reward in MK by definition.

We only sketch the proof of the second inequality as the intuition is clear and the rest is just algebra. According
to our argument above, if π never leaves the known states, then the value functions in M and MK should coincide.
Consequently, the difference in value functions can be bounded by the probability of leaving the set of known states
at some point in the trajectory, which is exactly what the lemma says.

Given the lemma, we have a particularly useful corollary. It says that the policy πi computed in each episode of
Algorithm 1 is near optimal, with the error being the probability of leaving the known state set.
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Corollary 10.7 (Implicit Explore-Exploit)

V π
?(MK)(s,M) ≥ V ?(s,M)− Pπ

?(MK)
M [escape from K in an episode|s1 = s]

Proof: By the lemma, we have

V π
?(MK)(s,M) ≥ V π

?(MK)(s,MK)− Pπ
?(MK)
M [escape from K in an episode|s1 = s]

≥ V π
?(M)(s,MK)− Pπ

?(MK)
M [escape from K in an episode|s1 = s]

≥ V π
?(M)(s,M)− Pπ

?(MK)
M [escape from K in an episode|s1 = s].

Here the first inequality follows from Lemma 10.6 applied with π = π?(MK), second inequality uses that π?(MK)
is the optimal policy in MK and hence obtains a higher reward than π?(M) and the third inequality follows from the
optimism of MK shown in Lemma 10.6.

We now have most of the ingredients for the theorem. In order to prove the theorem, we need to ensure that m is large
enough that when a state is declared known, then its transition and reward functions are reasonably accurate. For now,
let us assume that m is chosen large enough so that the induced approximate MDP M̂K is a good approximation to
the true induced MDP MK . Based on Lemma 10.5, we will assume that m is large enough so that the value functions
of these two MDPs are at most ε/2 different in any state. Then, applying this closeness twice, we see that

V π̂i(s,MK) ≥ V π̂i(s, M̂K)− ε

2
≥ V π

?

(s, M̂K)− ε

2
≥ V π

?

(s,MK)− ε.

Combining with Lemma 10.6, we see that for any starting state we have

V π̂i(s,M) ≥ V π
?

(s,MK)− ε− Pπ̂i

M [escape from K in an episode|s1 = s]

≥ V π
?

(s,M)− ε− Pπ̂i

M [escape from K in an episode|s1 = s],

where the first inequality is combining Lemma 10.6 with with the earlier bound, and the second inequality uses the
optimism of the induced MDP MK .

Thus, either the policy π̂i is at most 2ε suboptimal, or it visits an unknown state with probability at least ε. Intuitively,
this means that we visit an unknown state at least every 1/ε steps, if π̂i is not already near optimal. The total number of
visits to unknown states are bounded by mSA. This is because for each unknown state s, we need to try every action
a at least m times before s becomes known. Since we try the least frequently chosen action each time, it is ensured
that each action is chosen exactly m times before s becomes known. Consequently, we need roughly mSA/ε episodes
in order to ensure that every state is known and the algorithm can certifiably have a near optimal policy.

In order to obtain the theorem statement, we set m = O
(
S2H4

ε2 log S2A
δ

)
. Based on some calculations, which can

be found in either Brafman and Tennenholtz [2003] or Kearns and Singh [2002], it can be shown that this value of m
suffices for M̂K to be a good approximation for MK in that their value functions are close by Lemma 10.5.
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