Message-passing for Graph-structured Linear Programs:
Proximal Methods and Rounding Schemes

Pradeep Ravikumar PRADEEPR@STAT.BERKELEY.EDU
Department of Statistics

University of California, Berkeley

Berkeley, CA 94720

Alekh Agarwal ALEKHQCS.BERKELEY.EDU
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720

Martin J. Wainwright WAINWRIG@STAT.BERKELEY.EDU
Department of Statistics*

University of California, Berkeley

Berkeley, CA 94720

Editor: Yair Weiss

Abstract

The problem of computing a maximum a posteriori (MAP) configuration is a central com-
putational challenge associated with Markov random fields. There has been some focus
on “tree-based” linear programming (LP) relaxations for the MAP problem. This paper
develops a family of super-linearly convergent algorithms for solving these LPs, based on
proximal minimization schemes using Bregman divergences. As with standard message-
passing on graphs, the algorithms are distributed and exploit the underlying graphical
structure, and so scale well to large problems. Our algorithms have a double-loop char-
acter, with the outer loop corresponding to the proximal sequence, and an inner loop of
cyclic Bregman projections used to compute each proximal update. We establish conver-
gence guarantees for our algorithms, and illustrate their performance via some simulations.
We also develop two classes of rounding schemes, deterministic and randomized, for ob-
taining integral configurations from the LP solutions. Our deterministic rounding schemes
use a “re-parameterization” property of our algorithms so that when the LP solution is
integral, the MAP solution can be obtained even before the LP-solver converges to the
optimum. We also propose graph-structured randomized rounding schemes applicable to
iterative LP-solving algorithms in general. We analyze the performance of and report
simulations comparing these rounding schemes.

Keywords: graphical models, MAP Estimation, LP relaxation, proximal minimization,
rounding schemes

1. Introduction

A key computational challenge that arises in applications of discrete graphical models is to
compute the most probable configuration(s), often referred to as the mazimum a posteriori
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(MAP) problem. Although the MAP problem can be solved exactly in polynomial time
on trees (and more generally, graphs with bounded treewidth) using the max-product algo-
rithm, it is computationally challenging for general graphs. Indeed, the MAP problem for
general discrete graphical models includes a large number of classical NP-complete problems
as special cases, including MAX-CUT, independent set, and various satisfiability problems.

This intractability motivates the development and analysis of methods for obtaining
approximate solutions, and there is a long history of approaches to the problem. One class
of methods is based on simulated annealing (Geman and Geman, 1984), but the cooling
schedules required for theoretical guarantees are often prohibitively slow. Besag (1986) pro-
posed the iterated conditional modes algorithm, which performs a sequence of greedy local
maximizations to approximate the MAP solution, but may be trapped by local maxima.
Greig et al. (1989) observed that for binary problems with attractive pairwise interactions
(the ferromagnetic Ising model in statistical physics terminology), the MAP configuration
can be computed in polynomial-time by reduction to a max-flow problem. The ordinary
max-product algorithm, a form of non-serial dynamic-programming (Bertele and Brioschi,
1972), computes the MAP configuration exactly for trees, and is also frequently applied
to graphs with cycles. Despite some local optimality results (Freeman and Weiss, 2001;
Wainwright et al., 2004), it has no general correctness guarantees for graph with cycles,
and even worse, it can converge rapidly to non-MAP configurations (Wainwright et al.,
2005), even for problems that are easily solved in polynomial time (e.g., ferromagnetic Ising
models). For certain graphical models arising in computer vision, Boykov et al. (2001) pro-
posed graph-cut based search algorithms that compute a local maximum over two classes of
moves. A broad class of methods are based on the principle of convex relaxation, in which
the discrete MAP problem is relaxed to a convex optimization problem over continuous
variables. Examples of this convex relaxation problem include linear programming relax-
ations (Koval and Schlesinger, 1976; Chekuri et al., 2005; Wainwright et al., 2005), as well as
quadratic, semidefinite and other conic programming relaxations (for instance, (Ravikumar
and Lafferty, 2006; Kumar et al., 2006; Wainwright and Jordan, 2004)).

Among the family of conic programming relaxations, linear programming (LP) relax-
ation is the least expensive computationally, and also the best understood. The primary
focus of this paper is a well-known LP relaxation of the MAP estimation problem for pairwise
Markov random fields, one which has been independently proposed by several groups (Koval
and Schlesinger, 1976; Chekuri et al., 2005; Wainwright et al., 2005). This LP relaxation
is based on optimizing over a set of locally consistent pseudomarginals on edges and ver-
tices of the graph. It is an exact method for any tree-structured graph, so that it can be
viewed naturally as a tree-based LP relaxation.! The first connection between max-product
message-passing and LP relaxation was made by Wainwright et al. (2005), who connected
the tree-based LP relaxation to the class of tree-reweighted max-product (TRW-MP) algo-
rithms, showing that TRW-MP fixed points satisfying a strong “tree agreement” condition
specify optimal solutions to the LP relaxation.

For general graphs, this first-order LP relaxation could be solved—at least in principle—
by various standard algorithms for linear programming, including the simplex and interior-
point methods (Bertsimas and Tsitsikilis, 1997; Boyd and Vandenberghe, 2004). However,

1. In fact, this LP relaxation is the first in a hierarchy of relaxations, based on the treewidth of the
graph (Wainwright et al., 2005).
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such generic methods fail to exploit the graph-structured nature of the LP, and hence
do not scale favorably to large-scale problems (Yanover et al., 2006). A body of work
has extended the connection between the LP relaxation and message-passing algorithms
in various ways. Kolmogorov (2005) developed a serial form of TRW-MP updates with
certain convergence guarantees; he also showed that there exist fixed points of the TRW-
MP algorithm, not satisfying strong tree agreement, that do not correspond to optimal
solutions of the LP. This issue has a geometric interpretation, related to the fact that
coordinate ascent schemes (to which TRW-MP is closely related), need not converge to the
global optima for convex programs that are not strictly convex, but can become trapped
in corners. Kolmogorov and Wainwright (2005) showed that this trapping phenomena
does not arise for graphical models with binary variables and pairwise interactions, so that
TRW-MP fixed points are always LP optimal. Globerson and Jaakkola (2007b) developed
a related but different dual-ascent algorithm, which is guaranteed to converge but is not
guaranteed to solve the LP. Weiss et al. (2007) established connections between convex
forms of the sum-product algorithm, and exactness of reweighted max-product algorithms;
Johnson et al. (2007) also proposed algorithms related to convex forms of sum-product.
Various authors have connected the ordinary max-product algorithm to the LP relaxation
for special classes of combinatorial problems, including matching (Bayati et al., 2005; Huang
and Jebara, 2007; Bayati et al., 2007) and independent set (Sanghavi et al., 2007). For
general problems, max-product does not solve the LP; Wainwright et al. (2005) describe a
instance of the MIN-CUT problem on which max-product fails, even though LP relaxation
is exact. Other authors (Feldman et al., 2002a; Komodakis et al., 2007) have implemented
subgradient methods which are guaranteed to solve the linear program, but such methods
typically have sub-linear convergence rates (Bertsimas and Tsitsikilis, 1997).

This paper makes two contributions to this line of work. Our first contribution is to
develop and analyze a class of message-passing algorithms with the following properties:
their only fixed points are LP-optimal solutions, they are provably convergent with at least
a geometric rate, and they have a distributed nature, respecting the graphical structure of
the problem. All of the algorithms in this paper are based on the well-established idea of
prozimal minimization: instead of directly solving the original linear program itself, we solve
a sequence of so-called proximal problems, with the property that the sequence of associated
solutions is guaranteed to converge to the LP solution. We describe different classes of
algorithms, based on different choices of the proximal function: quadratic, entropic, and
tree-reweighted entropies. For all choices, we show how the intermediate proximal problems
can be solved by forms of message-passing on the graph that are similar to but distinct from
the ordinary max-product or sum-product updates. An additional desirable feature, given
the wide variety of lifting methods for further constraining LP relaxations (Wainwright and
Jordan, 2003), is that new constraints can be incorporated in a relatively seamless manner,
by introducing new messages to enforce them.

Our second contribution is to develop various types of rounding schemes that allow
for early termination of LP-solving algorithms. There is a substantial body of past work
(e.g., Raghavan and Thompson, 1987) on rounding fractional LP solutions so as to obtain
integral solutions with approximation guarantees. Our use of rounding is rather different:
instead, we consider rounding schemes applied to problems for which the LP solution is
integral, so that rounding would be unnecessary if the LP were solved to optimality. In this
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setting, the benefit of certain rounding procedures (in particular, those that we develop) is
allowing an LP-solving algorithm to be terminated before it has solved the LP, while still
returning the MAP configuration, either with a deterministic or high probability guarantee.
Our deterministic rounding schemes apply to a class of algorithms which, like the proxi-
mal minimization algorithms that we propose, maintain a certain invariant of the original
problem. We also propose and analyze a class of graph-structured randomized rounding
procedures that apply to any algorithm that approaches the optimal LP solution from the
interior of the relaxed polytope. We analyze these rounding schemes, and give finite bounds
on the number of iterations required for the rounding schemes to obtain an integral MAP
solution.

The remainder of this paper is organized as follows. We begin in Section 2 with back-
ground on Markov random fields, and the first-order LP relaxation. In Section 3, we intro-
duce the notions of proximal minimization and Bregman divergences, then derive various
of message-passing algorithms based on these notions, and finally discuss their convergence
properties. Section 4 is devoted to the development and analysis of rounding schemes, both
for our proximal schemes as well as other classes of LP-solving algorithms. We provide
experimental results in Section 5, and conclude with a discussion in Section 6.

2. Background

We begin by introducing some background on Markov random fields, and the LP relaxations
that are the focus of this paper. Given a discrete space X = {0,1,2,...,m — 1}, let
X =(Xj,...,Xy) € XN denote a N-dimensional discrete random vector. (While we have
assumed the variables take values in the same set X', we note that our results easily generalize
to the case where the variables take values in different sets with differing cardinalities.) We
assume that the distribution P of the random vector is a Markov random field, meaning
that it factors according to the structure of an undirected graph G = (V, E), with each
variable X associated with one node s € V, in the following way. Letting 65 : X — R and
Ost : X x X — R be singleton and edgewise potential functions respectively, we assume that
the distribution takes the form

P(z;0) o eXp{ZHS(l‘S)—I- Z Hst(xSaxt)}'

seV (s,t)eE

The problem of mazimum a posteriori (MAP) estimation is to compute a configuration
with maximum probability—that is, an element

¥ € arg max{ZHs(xS)—i- Z Ost(xs, 1) }, (1)

XN
¥e seV (s,t)€E

where the arg max operator extracts the configurations that achieve the maximal value. This
problem is an integer program, since it involves optimizing over the discrete space X. For
future reference, we note that the functions 04(-) and 4 (-) can always be represented in
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the form

xs) = Z Hs;j]l[xs = ]]7
JEX
Ost $s>mt Z est,]k]l =J; @ = k‘],
J,kex

where the m-vectors {0s.;, j € X'} and m x m matrices {0g.;i, (J, k) € X x X'} parameterize
the problem.

The first-order linear programming (LP) relaxation (Koval and Schlesinger, 1976; Chekuri
et al., 2005; Wainwright et al., 2005) of this problem is based on a set of pseudomarginals
s and pg, associated with the nodes and vertices of the graph. These pseudomarginals
are constrained to be non-negative, as well to normalize and be locally consistent in the
following sense:

Z wus(xzs) = 1, for all s € V, and (2)
TsEX
Z wst(Ts,xp) = ps(xs) for all (s,t) € E, zs € X. (3)
Tt€X

The polytope defined by the non-negativity constraints g > 0, the normalization con-
straints (2) and the marginalization constraints (3), is denoted by L(G). The LP relaxation
is based on maximizing the linear function

ZZH xs)s(Ts) Z Z Ost(xs, x) st (s, 1), (4)

s€V xs (s,t)EE Ts,Tt

subject to the constraint p € L(G).
In the sequel, we write the linear program (4) more compactly in the form max,,cy,) (0, 1)-

By construction, this relaxation is guaranteed to be exact for any problem on a tree-
structured graph (Wainwright et al., 2005), so that it can be viewed as a tree-based re-
laxation. The main goal of this paper is to develop efficient and distributed algorithms for
solving this LP relaxation,? as well as strengthenings based on additional constraints. For
instance, one natural strengthening is by “lifting”: view the pairwise MRF as a particular
case of a more general MRF with higher order cliques, define higher-order pseudomarginals
on these cliques, and use them to impose higher-order consistency constraints. This par-
ticular progression of tighter relaxations underlies the Bethe to Kikuchi (sum-product to
generalized sum-product) hierarchy (Yedidia et al., 2005); see Wainwright and Jordan (2003)
for further discussion of such LP hierarchies.

3. Proximal Minimization Schemes

We begin by defining the notion of a proximal minimization scheme, and various types of
divergences (among them Bregman) that we use to define our proximal sequences. Instead

2. The relaxation could fail to be exact though, in which case the optimal solution to the relaxed problem
will be suboptimal on the original MAP problem
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of dealing with the maximization problem max,cy,()(0, ), it is convenient to consider the
equivalent minimization problem,

in —(0, u). 5
i, (0, ) (5)

3.1 Proximal Minimization

The class of methods that we develop are based on the notion of proximal minimiza-
tion (Bertsekas and Tsitsiklis, 1997). Instead of attempting to solve the LP directly, we
solve a sequence of problems of the form

1
n+l __ : n
=arg min < — (0, u) + —D , 6
et =g min {0, + 2Dyl } (6)
where for iteration numbers n = 0,1,2,..., the vector u™ denotes current iterate, the

quantity w™ is a positive weight, and Dy is a generalized distance function, known as the
proximal function. (Note that we are using superscripts to represent the iteration number,
not for the power operation.)

The purpose of introducing the proximal function is to convert the original LP—which
is convex but not strictly so—into a strictly convex problem. The latter property is de-
sirable for a number of reasons. First, for strictly convex programs, coordinate descent
schemes are guaranteed to converge to the global optimum; note that they may become
trapped for non-strictly convex problems, such as the piecewise linear surfaces that arise
in linear programming. Moreover, the dual of a strictly convex problem is guaranteed to
be differentiable (Bertsekas, 1995); a guarantee which need not hold for non-strictly con-
vex problems. Note that differentiable dual functions can in general be solved more easily
than non-differentiable dual functions. In the sequel, we show how for appropriately chosen
generalized distances, the proximal sequence {u"} can be computed using message passing
updates derived from cyclic projections.

We note that the proximal scheme (6) is similar to an annealing scheme, in that it
involves perturbing the original cost function, with a choice of weights {w™}. While the
weights {w"} can be adjusted for faster convergence, they can also be set to a constant,
unlike for standard annealing procedures in which the annealing weight is taken to 0. The
reason is that Dy (|| (™), as a generalized distance, itself converges to zero as the algorithm
approaches the optimum, thus providing an “adaptive” annealing. For appropriate choice
of weights and proximal functions, these proximal minimization schemes converge to the LP
optimum with at least geometric and possibly superlinear rates (Bertsekas and Tsitsiklis,
1997; Tusem and Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregman divergences (Cen-
sor and Zenios, 1997), a class that includes various well-known divergences, among them the
squared fo-distance and norm, and the Kullback-Leibler divergence. We say that a function
f: S — R, with domain S C RP, is a Bregman function if int S # () and it is continuously
differentiable and strictly convex on int S. Any such function induces a Bregman divergence
Dy : S xintS — R as follows:

Dy(p'lv) == f(u) = f(v) = (V) W' = v). (7)
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Figure 1 illustrates the geometric interpretation of this definition in terms of the tangent
approximation. A Bregman divergence satisfies Dy(p || v) > 0 with equality if and only
if 4/ = v, but need not be symmetric or satisfy the triangle inequality, so it is only a
generalized distance. Further restrictions on the inducing function f are thus required for
the divergence to be “well-behaved,” for instance that it satisfy the property that for any
sequence v — v*, where v" € int S, v* € S, then Dy(v*||v") — 0. Censor and Zenios
(1988) impose such technical conditions explicitly in their definition of a Bregman function;
in this paper, we impose the stronger yet more easily stated condition that the Bregman
function f (as defined above) be of Legendre type (Rockafellar, 1970). In this case, in
addition to the Bregman function properties, it satisfies the following property: for any
sequence pu" — p* where p" € int S, p* € 95, it holds that ||V f(u"™)|| — +oo. Further, we
assume that the range V f(int S) = RP.

Figure 1: Graphical illustration of a Bregman divergence.

Let us now look at some choices of divergences, proximal minimizations (6) based on
which we will be studying in the sequel.

3.1.1 QUADRATIC DIVERGENCE

This choice is the simplest, and corresponds to setting the inducing Bregman function f in
(7) to be the quadratic function

1
0 = T Tkt T X )
seV xselX (s,t)EE (xs,2t)EX XX

defined over nodes and edges of the graph. The divergence is then simply the quadratic
norm across nodes and edges

1 1
Qulv):= 52”#3 —1/5H2—|—§ Z st — vstll, (8)
seV (s,t)eE

where we have used the shorthand [|ps — vsl|* = >, oy lus(zs) — vs(zs)[?, with similar
notation for the edges.
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3.1.2 WEIGHTED ENTROPIC DIVERGENCE

Another choice for the inducing Bregman function is the weighted sum of negative entropies

Hy(u) = Zasﬂs(us) + Z st Hst (fst), 9)

seV (s,t)eE

where H, and H,; are defined by

Hy(ps) == Z ps(xs) log pus(zs), and
Ts€EX

Hst(,ust) = Z ,Ust(l's»mt) logust($s>mt)a
(zs,xt)EXXX

corresponding to the node-based and edge-based negative entropies, respectively. The cor-
responding Bregman divergence is a weighted sum of Kullback-Leibler (KL) divergences
across the nodes and edges. In particular, letting as > 0 and ag > 0 be positive weights
associated with node s and edge (s,t) respectively, we define

Da(#””) = ZasD(MS Hys) + Z astD(MstHVst)a (10)
seV (s,t)eE

where D(p| q) := Y, (p(x)log % — [p(z) — q(x)]) is the KL divergence. An advantage of
the KL divergence, relative to the quadratic norm, is that it automatically acts to enforce
non-negativity constraints on the pseudomarginals in the proximal minimization problem.

(See Section 3.4 for a more detailed discussion of this issue.)

3.1.3 TREE-REWEIGHTED ENTROPIC DIVERGENCE

Our last example is based on a tree-reweighted entropy. The notion of a tree-reweighted
entropy was first proposed by Wainwright et al. (2002). Their entropy function however
while a Bregman function is not of the Legendre type. Nonetheless let us first describe
their proposed function. Given a set 7 of spanning trees T'= (V, E(T)), and a probability
distribution p over 7, we can obtain edge weights ps; € (0,1] for each edge (s,t) of the
graph G as pst = ) _por 1((s,t) € E). Given such edge weights, define

Joew(p) = ZFIS(NS)'i‘ Z pstLst(fist), (11)

seV (s,t)eE
where H is the negative entropy as defined earlier, while the quantity Iy; defined as

Mst($57 xt)

Ig(pst) == pst(xs, z¢) log ,
e (zs xt)ZEXXX e (20 st(s, )30, st (26, 1))

is the mutual information associated with edge (s,t). It can be shown that the function
ftrw 1s strictly convex and continuously differentiable when restricted to p € L(G); and in
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particular that it is a Bregman function with domain L(G). Within its domain L(G), the
function can be re-expressed as a weighted negative entropy family (9),

faw(p) = D (L= > pa)Hi(w) + D patHa(pst),

seV t:(s,t)EE (s,t)eE

but where the node entropy weights as := 1 — Zt:(si)e g Pst are not always positive. The
corresponding Bregman divergence belongs to the weighted entropic family (10), with node
weights «, defined above, and edge-weights o = ps:. However as stated above, this tree-
reweighted entropy function is not of Legendre type, and hence is not admissible for our
proximal minimization procedure (6).

However, Globerson and Jaakkola (2007a) proposed an alternative tree reweighted en-
tropy that while equal to fiw(p) for p € L(G) is yet convex for all p (not just when
restricted to L(G)). Their proposed function is described as follows. For each undirected
edge in FE, construct two oriented edges in both directions; denote the set of these oriented
edges by E. Then given node weights p,s € (0, 1] for each node s € V, and edge weights
pst € (0,1] for oriented edges (t — s) € E, define

forw (1) 1= D posHa(ps) + D pyjeHope(st), (12)

seV (t—s)EE
where the quantity H s\t defined as

,Ust(xSa wt)

i = log s~ (@ 20)
sft(test) >, nalesw)log > Mst(Th, )

(zs,21)EX XX

is the conditional entropy of X, given X; with respect to the joint distribution pg. It can
be shown that this oriented tree-reweighted entropy is not only a Bregman function with
domain the non-negative orthant R, but is also of Legendre type, so that it is indeed
admissible for our proximal minimization procedure. The corresponding divergence is given
as,

Dy(pllv) = Z PosD(ps || vs) + Z Ps|t(D(,ust | vse) + E(Nst [ vse)),
seV t—seE

where D(p|| q) is the KL divergence, and D(- | -) is a KL divergence like term, defined as
[>_ar vst(a, 1))

D(pse || vsr) := tist (s, T ) log
S S (zs acgE:XxX o [Zx’s pst (2%, o))
Vet(2s, T
b et ) vateaso),
xS )

3.2 Proximal Sequences via Bregman Projection

The key in designing an efficient proximal minimization scheme is ensuring that the proximal
sequence {u"} can be computed efficiently. In this section, we first describe how sequences
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of proximal minimizations (when the proximal function is a Bregman divergence) can be
reformulated as a particular Bregman projection. We then describe how this Bregman
projection can itself be computed iteratively, in terms of a sequence of cyclic Bregman
projections (Censor and Zenios, 1997) based on a decomposition of the constraint set L(G).
In the sequel, we then show how these cyclic Bregman projections reduce to very simple
message-passing updates.

Given a Bregman divergence D, the Bregman projection of a vector v onto a convex set
C is given by

poo:i= argminD¢(p | v). (13)
neC

That this minimum is achieved and is unique follows from our assumption that the function
f is of Legendre type and from Theorem 3.12 in Bauschke and Borwein (1997), so that the
projection is well-defined. We define the projection operator

Ie(v) : = argmin Dy (u || v), (14)
pel

where we have suppressed the dependence on the Bregman function f in the notation.
When the constraint set C' = ﬁi]\i1ci is an intersection of simpler constraint sets, then a
candidate algorithm for the Bregman projection is to compute it in a cyclic manner: by
iteratively projecting onto the simple constraint sets {C;} (Censor and Zenios, 1997). Define
the sequence

for some control sequence parameter i : N — {1,..., M} that takes each output value
an infinite number of times, for instance i(¢) = tmod M. It can be shown that when the
constraints are affine then such cyclic Bregman projections u! converge to the projection
[ onto the entire constraint set as defined in (13) so that u* — 7 (Censor and Zenios,
1997). But when a constraint C; is non-affine, the individual projection would have to
be followed by a correction (Dykstra, 1985; Han, 1988; Censor and Zenios, 1997) in order
for such convergence to hold. In Appendix A we have outlined these corrections briefly
for the case where the constraints are linear inequalities. For ease of notation, we will
now subsume these corrections into the iterative projection notation, p!*! = Hey (ut), so
that the notation assumes that the Bregman projections are suitably corrected when the
constraints Cj(;) are non-affine. In this paper, other than positivity constraints, we will be
concerned only with affine constraints, for which no corrections are required.

Let us now look at the stationary condition characterizing the optimum zi of (13). As
shown in for instance Bertsekas (1995), the optimum fi of any constrained optimization
problem min,ecc g() is given by the stationary condition,

(Vi) 1~ i) = 0, (16)

for all i € C. For the projection problem (13), the gradient of the objective Dy(u||v) :=
flp)—f(v)—(Vf(v), p—v) with respect to the first argument p is given by V f(u) —V f(v),
which when substituted in (16) yields the stationary condition of the optimum p as

(Vf(w) =VfW), p—pm) = 0, (17)
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for all p € C. Now consider the proximal minimization problem to be solved at step n,
namely the strictly convex problem

. 1 .
min {600+ sl (18)

Solving for the derivative of this objective with respect to p as —0 + == (V f(u) — V f(u™)),
and substituting in (16), we obtain the conditions defining the optimum p"*! as

(V") = V(™) w0, p— ™) >0, (19)

for all p € L(G). Comparing these with the conditions for Bregman projection (17), we see
that if there exists a vector v such that

V) =Vfu")+w"0, (20)

then the proximal iterate p"*! is the Bregman projection of this vector v onto the set
L(G). As shown in Bauschke and Borwein (1997), for any function f of Legendre type with
domain S, the gradient V f is a one-to-one function with domain int S, so that its inverse
(Vf)~!is a well-defined function on the range Vf(int S) of Vf. Since we have assumed
that this range is RP, we can thus obtain the unique v which satisfies the condition in (20)
as v = (Vf) Y (Vf(u) + w™0) (Note that the range constraint could be relaxed to only
require that the range of Vf be a cone containing #). Accordingly, we set up the following
notation: for any Bregman function f, induced divergence Dy, and convex set C', we define
the operator

Jr(p,v) = (V) UV f(p) +v).

We can then write the proximal update (18) in a compact manner as the compounded
operation

pttt = HL(G)<Jf(anwn9)>'

Consequently, efficient algorithms for computing the Bregman projection (13) can be lever-
aged to compute the proximal update (18). In particular, we consider a decomposition
of the constraint set as an intersection—L(G) = N L;(G)—and then apply the method
of cyclic Bregman projections discussed above. Initializing ;™? = p™ and updating from
w7 — ™™t by projecting p™7 onto constraint set L) (G), where i(7) = 7 mod M, for
instance, we obtain the meta-algorithm summarized in Algorithm 1.

As shown in the following sections, by using a decomposition of L(G) over the edges
of the graph, the inner loop steps correspond to local message-passing updates, slightly
different in nature depending on the choice of Bregman distance. Iterating the inner and
outer loops yields a provably convergent message-passing algorithm for the LP. Convergence
follows from the convergence properties of proximal minimization (Bertsekas and Tsitsiklis,
1997), combined with convergence guarantees for cyclic Bregman projections (Censor and
Zenios, 1997). In the following section, we derive the message-passing updates corresponding
to various Bregman functions of interest.
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Algorithm 1 Basic proximal-Bregman LP solver

Given a Bregman distance D, weight sequence {w™} and problem parameters 6:

e Initialize x° to the uniform distribution: ugo) (zs) = 1, ug?) (T, 1) = 5.

e Outer Loop: For iterations n = 0,1,2,..., update "' = Il () (Jf(,u”,wnﬁ)).

— Solve Outer Loop via Inner Loop:
(a) Inner initialization u™ = J¢(u", w™0).
(b) For t =0,1,2,..., set i(t) =¢ mod M.
(c) Update p™"*! =TIy, () (1™").

3.3 Quadratic Projections

Consider the proximal sequence with the quadratic distance @ from Equation (8); the
Bregman function inducing this distance is the quadratic function ¢(y) = %yQ, with gradient
Vq(y) = y. A little calculation shows that the operator J, takes the form

Jo(p,wb) = p+wb,

whence we obtain the initialization in Equation (22).
We now turn to the projections ™71 = I, (1™", L;(G)) onto the individual constraints
L;(G). For each such constraint, the local update is based on the solving the problem

n,7+1 — 4 o ’v n,t } 21
/ ane i {a(0) ~ (0, Va4 @

In Appendix B.1, we show how the solution to these inner updates takes the form (23) given
in Algorithm 2. The {Zs, Z} variables correspond to the dual variables used to correct the
Bregman projections for positivity (and hence inequality) constraints, as outlined in (44)
in Section 3.2.

3.4 Entropic Projections

Consider the proximal sequence with the Kullback-Leibler distance D(u||v) defined in
Equation (10). The Bregman function A, inducing the distance is a sum of negative entropy
functions f(u) = plog i, and its gradient is given by V() = log(u)+ 1. In this case, some
calculation shows that the map v = J¢(u,wf) is given by

v = pexp(wb/a),
whence we obtain the initialization Equation (25). In Appendix B.2, we derive the message-
passing updates summarized in Algorithm 3.
3.5 Tree-reweighted Entropy Proximal Sequences

In the previous sections, we saw how to solve the proximal sequences following the algorith-
mic template 1 and using message passing updates derived from cyclic Bregman projections.
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Algorithm 2 Quadratic Messages for p"+!

Initialization:
Wi (@s,x) = ul (s, 20) + w0t (2, 1), (22)
p0 () = p{M(2s) + w"0s(xs).
Zs(xs) = g"’o)(l“s)’
Zst(l's»xt) = ﬂg‘l)(xs’wt)'
repeat

for each edge (s,t) € E do

n,7+1 n,7T 1 n,T \T)
N R e [ - S ()}, (23

1
(n,741) _ (n,7) (n 7') § n,T)
M (.139) = Hs (JL;)—F <m+1> < + Me x%xt ) (24)

(n,741)

Cst(ws,7¢) = min{Zs(vs, 1), gy (ws,24)},
Zst(ﬂfs, ﬂft) = Zst($37$t) - Cst(x37xt)7
pl T @ m) =l T (e, m0) — Carla, ).

end for
for each node s € V do

1
(n,7+1) ) = (1=5 plmn
:us (.139) :us ( S) + m < - /.LS (x9)> )

Cs(ws) = min{Zy(xs), p 7 (2,)},
Zs(xs) = Zs(xs) - Cs(xs)a
Ngn’7+1)(x8) = Ngn’7+1)(x8) — Cs(x5).

end for
until convergence

In this section, we show that for the tree-reweighted entropic divergences (12), in addition to
the cyclic Bregman projection recipe of the earlier sections, we can also use tree-reweighted
sum-product or related methods (Globerson and Jaakkola, 2007b; Hazan and Shashua,
2008) to compute the proximal sequence.
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Algorithm 3 Entropic Messages for p"+!
Initialization:

p00 g x) = (2, 2p) exp(WOs (2, 30) Jagy),  and (25)

p0(@s) = M (@) exp(w By(xs) /as).

repeat
for each edge (s,t) € E do

(1) (n,7) i () o
gt (xs,xt) = pg (x5, x¢) ) , and  (26)

(n,7)
Tt Mgt ($S y Lt

Xst

as n,T astoagt
'ugnﬂ'-l—l)(l,s) — Hgnﬂ') («Ts) astogst (Z ,ugt )(l‘s, xt)> . (27)
Xt

end for
for each node s € V do

(n,7)
s Ts
Mgn,TJrl) (xs) _ K (n(T) ) ) (28)
sz s ’ ('TS)

end for
until convergence

Recall the proximal sequence optimization problem (6) written as

1
n+l _ : — (0 - D n
1 argyghl(%){ (0, v) + 0 Fllp )}

1
= i — 0, . - ") - v " ’ - . 29
ang i, { = (6,0) 4 2 (70) = £ = (V16 v =) b (20
Let us denote 0" := w™0 + V f(u"), and set the Bregman function f to the tree-reweighted
entropy firw defined in (11) (or equivalently the oriented tree-reweighted entropy fotw (12)
since both are equivalent over the constraint set IL(G)). The proximal optimization problem
as stated above (29) reduces to,

p"t = arg min {(0", v) + fuw(¥)}. (30)
veL(G)
But this is precisely the optimization problem solved by the tree-reweighted sum-product (Wain-
wright and Jordan, 2003), as well as other related methods (Globerson and Jaakkola, 2007b;
Hazan and Shashua, 2008), for a graphical model with parameters 6™.
Computing the gradient of the function fi;v, and performing some algebra yields the
algorithmic template of Algorithm 4.
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Algorithm 4 TRW proximal solver

e For outer iterations n =0,1,2,.. .,

(a) Update the parameters:
05 (zs) = w"s(xs) +log(p"(xs)) + 1,

Hgt(l‘s,xt) = wnast(ajsuxt) + Pst log — fﬁ?t(l"s,l‘t) — — 1.
Z;B’S Hst(xw $t) Z;B; Mst($57 xt)

(b) Run a convergent TRW-solver on a graphical model with parameters 6", so as
to compute

ntl = i — (" + Jtrw .
[ argyghl(%){ 0", v) + fi (V)}

3.6 Convergence

We now turn to the convergence of the message-passing algorithms that we have proposed.
At a high-level, for any Bregman proximal function, convergence follows from two sets
of known results: (a) convergence of proximal algorithms; and (b) convergence of cyclic
Bregman projections.

For completeness, we re-state the consequences of these results here. For any positive
sequence w" > 0, we say that it satisfies the infinite travel condition if 3 7 | (1/w™) = +o0.
We let p* € L(G) denote an optimal solution (not necessarily unique) of the LP, and use
f = f(p*) = (0, p*) to denote the LP optimal value. We say that the convergence rate is
superlinear if

) =
1 AR ) S
Y R oy
and linear if
n+1\ _ prx

im — <
n—+too [f(u™) — f*|
for some v € (0,1). We say the convergence is geometric if there exists some constant C' > 0
and « € (0,1) such that for all n,

[f(u") = f < O™ (33)

Proposition 1 (Rate of outer loop convergence) Consider the sequence of iterates pro-
duced by a proximal algorithm (6) for LP-solving.

(a) Using the quadratic proxzimal function and positive weight sequence w™ — 400 satis-
fying infinite travel, the prozimal sequence {u™} converges superlinearly.

(b) Using the entropic proximal function and positive weight sequence w™ satisfying infinite
travel, the prozimal sequence {u™} converges:
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(i) superlinearly if w™ — 0, and

(ii) at least linearly if 1/w™ > ¢ for some constant ¢ > 0.

The quadratic case is covered in Bertsekas and Tsitsiklis (1997), whereas the entropic case
was analyzed by Tseng and Bertsekas (1993), and Iusem and Teboulle (1995).

Our inner loop message updates use cyclic Bregman projections, for which there is
also a substantial literature on convergence. Censor and Zenios (1997) show that with
dual feasibility correction, cyclic projections onto general convex sets are convergent. For
Euclidean projections with linear constraints, Deutsch and Hundal (2006) establish a linear
rate of convergence, with the rate dependent on angles between the half-spaces defining
the constraints. The intuition is that the more orthogonal the half-spaces, the faster the
convergence; for instance, a single iteration suffices for completely orthogonal constraints.
Our inner updates thus converge linearly to the solution within each outer proximal step.

We note that the rate-of-convergence results for the outer proximal loops assume that
the proximal update (computed within each inner loop) has been performed exactly. In
practice, the inner loop iterations do not converge finitely (though they have a linear rate
of convergence), so that an early stopping entails that the solution to each proximal update
would be computed only approximately, up to some accuracy e. That is, if the proximal
optimization function at outer iteration n is A" (x) with minimum g"*!, then the computed
proximal update g™ is sub-optimal, with A" (u"*1) — h"(u"*1) < e. Some recent theory
has addressed whether superlinear convergence_can still be obtained in such a setting; for
instance, Solodov and Svaiter (2001) shows that that under mild conditions superlinear rates
still hold for proximal iterates with inner-loop solutions that are e-suboptimal. In practice,
we cannot directly use e-suboptimality as the stopping criterion for the inner loop iterations
since we do not have the optimal solution p"*!'. However, since we are trying to solve a
feasibility problem, it is quite natural to check for violation in the constraints defining IL(G).
We terminate our inner iterations when the violation in all the constraints below a tolerance
€. As we show in Section 5, our experiments show that setting this termination threshold to
€ = 10~* is small enough for sub-optimality to be practically irrelevant and that superlinear
convergence still occurs.

3.6.1 REMARKS

The quadratic proximal updates turn out to be equivalent to solving the primal form of the
LP by the projected subgradient method (Bertsekas, 1995) for constrained optimization.
(This use of the subgradient method should be contrasted with other work Feldman et al.
(2002b); Komodakis et al. (2007) which performed subgradient descent to the dual of the
LP.) For any constrained optimization problem:

min fo(w)
s.t. fi(p) <0, 5=1,....,m, (34)

the projected subgradient method performs subgradient descent iteratively on (i) the ob-
jective function fo, as well as on (ii) the constraint functions {f;}7, till the constraints are
satisfied. Casting it in the notation of Algorithm 1; over outer loop iterations n =1,..., it
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sets

p =" — anV fo(u"),
and computes, over inner loop iterations t =1,...,

jt) = t modm,
P = ™ — Y f ) (™),
and sets p"t! = ;"°, the converged estimate of the inner loops of outer iteration n. The
constants {a,, o, 1} are step-sizes for the corresponding subgradient descent steps.

The constraint set in our LP problem, LL(G), has equality constraints so that it is not
directly in the form of Equation (34). However any equality constraint hA(u) = 0 can be
rewritten equivalently as two inequality constraints h(p) < 0, and —h(pu) < 0; so that
one could cast our constrained LP in the form of (34) and solve it using the constrained

subgradient descent method. As regards the step-sizes, suppose we set a,, = w", and ;¢

. n,t\_ £. *
according to Polyak’s step-size (Bertsekas, 1995) so that oy, = L) {fﬁt)(f )
’ IV £5¢6) (™ 0)113
*

p* is the constrained optimum. Since p* is feasible by definition, f;(x*) = 0. Further,

, where

for the normalization constraints Cls(pu) § 1 where Cys(p) := >, cx ts(®s) — 1, we have

[VCss(p)||* = m, while for the marginalization constraints Ci(p) § 0, where Cg(u) =
> mpen Mst(Ts, 1) = ps(xs), we have |[VCy(p)||* = (m + 1). It can then be seen that the
subgradient method for constrained optimization applied to our constrained LP with the
above step-sizes yields the same updates as our quadratic proximal scheme.

4. Rounding Schemes with Optimality Guarantees

The graph-structured LP in (4) was a relaxation of the MAP integer program (1), so that
there are two possible outcomes to solving the LP: either an integral vertex is obtained,
which is then guaranteed to be a MAP configuration, or a fractional vertex is obtained, in
which case the relaxation is loose. In the latter case, a natural strategy is to “round” the
fractional solution, so as to obtain an integral solution (Raghavan and Thompson, 1987).
Such rounding schemes may either be randomized or deterministic. A natural measure of
the quality of the rounded solution is in terms of its value relative to the optimal (MAP)
value. There is now a substantial literature on performance guarantees of various rounding
schemes, when applied to particular sub-classes of MAP problems (e.g., Raghavan and
Thompson, 1987; Kleinberg and Tardos, 1999; Chekuri et al., 2005).

In this section, we show that rounding schemes can be useful even when the LP optimum
is integral, since they may permit an LP-solving algorithm to be finitely terminated—that is,
before it has actually solved the LP—while retaining the same optimality guarantees about
the final output. An attractive feature of our proximal Bregman procedures is the existence
of precisely such rounding schemes—namely, that under certain conditions, rounding pseu-
domarginals at intermediate iterations yields the integral LP optimum. We describe these
rounding schemes in the following sections, and provide two kinds of results. We provide
certificates under which the rounded solution is guaranteed to be MAP optimal; moreover,
we provide upper bounds on the number of outer iterations required for the rounding scheme
to obtain the LP optimum.

677



In the next Section 4.1, we describe and analyze deterministic rounding schemes that are
specifically tailored to the proximal Bregman procedures that we have described. Then in
the following Section 4.2, we propose and analyze a graph-structured randomized rounding
scheme, which applies not only to our proximal Bregman procedures, but more broadly
to any algorithm that generates a sequence of iterates contained within the local polytope

L(G).

4.1 Deterministic Rounding Schemes

We begin by describing three deterministic rounding schemes that exploit the particular
structure of the Bregman proximal updates.

4.1.1 NODE-BASED ROUNDING

This method is the simplest of the deterministic rounding procedures, and applies to the
quadratic and entropic updates. It operates as follows: given the vector u™ of pseudo-
marginals at iteration n, obtain an integral configuration 2™ (") € X by choosing

n

zg € argmax p" (), for each s € V. (35)

We say that the node-rounded solution z" is edgewise-consistent if

(¥, z}) € arg( / I/n)g}){(xxugt(a:;,x;) for all edges (s,t) € E. (36)
Ty

4.1.2 NEIGHBORHOOD-BASED ROUNDING

This rounding scheme applies to all three proximal schemes. For each node s € V', denote
its star-shaped neighborhood graph by N = {(s,t)|t € N(s)}, consisting of edges between
node s and its neighbors. Let {QUA, ENT, TRW} refer to the quadratic, entropic, and
tree-reweighted schemes respectively.

(a) Define the neighborhood-based energy function

2p" (zs) + Z( )u”(xs, ) for QUA
teN(s
Fy(z; g®) = 2a5log p(xs) + te%:( )ast log uy(zs,x¢) for ENT (37)
S
2log " (z4) + te%(g) Pt log %“;(;) for TRW.

(b) Compute a configuration x™(Ny) maximizing the function Fs(z;p™) by running two
rounds of ordinary max-product on the star graph.

Say that such a rounding is neighborhood-consistent if the neighborhood MAP solutions
{z™(Ns),s € V} agree on their overlaps.
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4.1.3 TREE-BASED ROUNDING

This method applies to all three proximal schemes, but most naturally to the TRW proximal
method. Let T1,..., Tk be a set of spanning trees that cover the graph (meaning that
each edge appears in at least one tree), and let {p(T;), i = 1,...,K} be a probability
distribution over the trees. For each edge (s,t), define the edge appearance probability
Pst = Efil p(T;) I[(s,t) € T;]. Then for each tree i =1,..., K:

(a) Define the tree-structured energy function

Slogu™(xs)+ Y. -tlogu(ws, x4) for QUA

sev (s,)eET)
Fy(z; g™ = s;/ s log p" () + ( t)ezé(T.) ;‘;’: log u2(xs,2¢) for ENT (38)
n : L (wem)
Sg/ log u"(zs) + . t)ez}%(:r-) log PRCATRED) for TRW.

(b) Run the ordinary max-product problem on energy F;(x;u™) to find a MAP-optimal
configuration z"(7;).

Say that such a rounding is tree-consistent if the tree MAP solutions {z"(T;),i =1,..., M}
are all equal. This notion of tree-consistency is similar to the underlying motivation of the
tree-reweighted max-product algorithm (Wainwright et al., 2005).

4.1.4 OPTIMALITY CERTIFICATES FOR DETERMINISTIC ROUNDING

The following result characterizes the optimality guarantees associated with these round-
ing schemes, when they are consistent respectively in the edge-consistency, neighborhood-
consistency and tree-consistency senses defined earlier.

Theorem 2 (Deterministic rounding with MAP certificate) Consider a sequence of
iterates {u"} generated by the quadratic or entropic proximal schemes. For any n =
1,2,3,..., any consistent rounded solution x™ obtained from p™ via any of the node, neigh-
borhood or tree-rounding schemes (when applicable) is guaranteed to be a MAP-optimal so-
lution. For the iterates of TRW proximal scheme, the guarantee holds for both neighborhood
and tree-rounding methods.

We prove this claim in Section 4.1.6. It is important to note that such deterministic
rounding guarantees do not apply to an arbitrary algorithm for solving the linear program.
At a high-level, there are two key properties required to ensure guarantees in the rounding.
First, the algorithm must maintain some representation of the cost function that (up to
possible constant offsets) is equal to the cost function of the original problem, so that the
set of maximizers of the invariance would be equivalent to the set of maximizers of the
original cost function, and hence the MAP problem. Second, given a rounding scheme
that maximizes tractable sub-parts of the reparameterized cost function, the rounding is
said to be admissible if these partial solutions agree with one another. Our deterministic
rounding schemes and optimality guarantees follow this approach, as we detail in the proof
of Theorem 2.
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We note that the invariances maintained by the proximal updates in this paper are
closely related to the reparameterization condition satisfied by the sum-product and max-
product algorithms (Wainwright et al., 2003). Indeed, each sum-product (or max-product)
update can be shown to compute a new set of parameters for the Markov random field that
preserves the probability distribution. A similar but slightly different notion of reparame-
terization underlies the tree-reweighted sum-product and max-product algorithms (Wain-
wright et al., 2005); for these algorithms, the invariance is preserved in terms of convex
combinations over tree-structured graphs. The tree-reweighted max-product algorithm at-
tempts to produce MAP optimality certificates that are based on verifying consistency of
MAP solutions on certain tree-structured components whose convex combination is equal
to the LP cost. The sequential TRW-S max-product algorithm of Kolmogorov (2006) is a
version of tree-reweighted max-product using a clever scheduling of the messages to guaran-
tee monotonic changes in a dual LP cost function. Finally, the elegant work of Weiss et al.
(2007) exploits similar reparameterization arguments to derive conditions under which their
convex free-energy based sum-product algorithms yield the optimal MAP solution.

An attractive feature of all the rounding schemes that we consider is their relatively low
computational cost. The node-rounding scheme is trivial to implement. The neighborhood-
based scheme requires running two iterations of max-product for each neighborhood of the
graph. Finally, the tree-rounding scheme requires O(K N) iterations of max-product, where
K is the number of trees that cover the graph, and NNV is the number of nodes. Many graphs
with cycles can be covered with a small number K of trees; for instance, the lattice graph
in 2-dimensions can be covered with two spanning trees, in which case the rounding cost is
linear in the number of nodes.

4.1.5 BOUNDS ON ITERATIONS FOR DETERMINISTIC ROUNDING

Of course, the natural question is how many iterations are sufficient for a a given rounding
scheme to succeed. The following result provides a way of deriving such upper bounds:

Corollary 3 Suppose that the LP optimum is uniquely attained at an integral vertex u*,
and consider algorithms generating sequence {u"} converging to u*. Then we have the
following guarantees:

(a) for quadratic and entropic schemes, all three types of rounding recover the MAP so-
lution once ||p" — pl|loo < 1/2.

(b) for the TRW-based prozimal method, tree-based rounding recovers the MAP solution
once [|p" = plloo < 7y -

Proof We first claim that if the £5-bound || — p* || < 3 is satisfied, then the node-based
rounding returns the (unique) MAP configuration, and moreover this MAP configuration
x* is edge-consistent with respect to u™. To see these facts, note that the o, bound implies,
in particular, that at every node s € V', we have
1
g (25) = ps(@s)l = s (zs) =1 < 5,
*

which implies that p2(z%) > 1/2 as pi(zf) = 1. Due to the non-negativity constraints
and marginalization constraint ) ., pu"(7s) = 1, at most one configuration can have

680



mass above 1/2. Thus, node-based rounding returns =% at each node s, and hence overall,
it returns the MAP configuration x*. The same argument also shows that the inequality
1 (x%,2) > & holds, which implies that (27, z}) = arg maxg, 4, 1" (x5, ;) for all (s, t) € E.
Thus, we have shown x* is edge-consistent for u7,, according to the definition (36).

Next we turn to the performance of neighborhood and tree-rounding for the quadratic
and entropic updates. For n > n*, we know that z* achieves the unique maximum of p7(z;)
at each node, and ul(xs,z;) on each edge. From the form of the neighborhood and tree
energies (37),(38), this node- and edge-wise optimality implies that x*(N(s)) := {x},t €
s U N(s)} maximizes the neighborhood-based and tree-based cost functions as well, which
implies success of neighborhood and tree-rounding. (Note that the positivity of the weights
as and oy is required to make this assertion.)

For the TRW algorithm in part (b), we note that when ||p" — plcc < 1/(4N), then we
must have p?(z%) > 1 —1/(4N) for every node. We conclude that these inequalities imply
that 2* = («7,...,2}) must be the unique MAP on every tree. Indeed, consider the set
S ={z e XN | v # 2*}. By union bound, we have

P(S) =P[Es eV | x5 # a}]

M) =

P(xs # )

V)
I
—

I
M) =

(1 - ,us(x:)) S

)

-

@
Il
-

showing that we have P(z*) > 3/4, so that z* must be the MAP configuration.

To conclude the proof, note that the tree-rounding scheme computes the MAP configu-
ration on each tree T;, under a distribution with marginals s and ug. Consequently, under
the stated conditions, the configuration z* must be the unique MAP configuration on each
tree, so that tree rounding is guaranteed to find it. |

Using this result, it is possible to bound the number of iterations required to achieve the
foo-bounds. In particular, suppose that the algorithm has a linear rate of convergence—say
that | f(u") — f(p*)] < |f (1Y) — f(u*)|y™ for some v € (0,1). For the quadratic or entropic
methods, it suffices to show that ||u™ — p*||2 < 1/2. For the entropic method, there exists
some constant C' > 0 such that ||u™ — p*|ls < 55[f (k™) — f(u*)| (cf. Prop. 8, Iusem and
Teboulle, 1995). Consequently, we have

Consequently, after n* : = logc‘lj; gﬁ)/;)f Wl jterations, the rounding scheme would be guar-
anteed to configuration for the entropic proximal method. Similar finite iteration bounds
can also be obtained for the other proximal methods, showing finite convergence through
use of our rounding schemes.

Note that we proved correctness of the neighborhood and tree-based rounding schemes
by leveraging the correctness of the node-based rounding scheme. In practice, it is possible
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for neighborhood- or tree-based rounding to succeed even if node-based rounding fails;
however, we currently do not have any sharper sufficient conditions for these rounding
schemes.

4.1.6 PROOF OF THEOREM 2

We now turn to the proof of Theorem 2. At a high level, the proof consists of two main
steps. First, we show that each proximal algorithm maintains a certain invariant of the orig-
inal MAP cost function F(z;#); in particular, the iterate p" induces a reparameterization
F(x; u™) of the cost function such that the set of maximizers is preserved—viz.:

arg max F(x;0) := arg max E Os(xs) + E Ost(zs, 1) = arg max F(x; u").
zexN zexN zeXN
seVxseX (s,t)EE,xs,xtEX

(39)

Second, we show that the consistency conditions (edge, neighborhood or tree, respectively)
guarantee that the rounded solution belongs to arg max,cy~ F'(z; ™)
We begin with a lemma on the invariance property:

Lemma 4 (Invariance of maximizers) Define the function

Z ,us(xs) + Z ,Ust(w&xt) for QUA
seV (s,t)eE

F(x;p) := ;/ s log pus(xs) + ( %:EE asilog pust(xs, x¢)  for ENT (40)
S;/ log ps(xs) + (Stz):eE pst log % for TRW.

At each iteration n = 1,2,3,... for which p"™ > 0, the function F(x;u™) preserves the set
of maximizers (39).

The proof of this claim, provided in Appendix C, is based on exploiting the necessary
(Lagrangian) conditions defined by the optimization problems characterizing the sequence
of iterations {p"}.

For the second part of the proof, we show how a solution z*, obtained by a rounding
procedure, is guaranteed to maximize the function F'(x; u™), and hence (by Lemma 4) the
original cost function F'(z;#). In particular, we state the following simple lemma:

Lemma 5 The rounding procedures have the following guarantees:

(a) Any edge-consistent configuration from node rounding mazimizes F(x;u"™) for the
quadratic and entropic schemes.

(b) Any neighborhood-consistent configuration from neighborhood rounding mazimizes
F(z;u™) for the quadratic and entropic schemes.

(c) Any tree-consistent configuration from tree rounding mazimizes F(x;u™) for all three
schemes.
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Proof We begin by proving statement (a). Consider an edge-consistent integral configura-
tion x* obtained from node rounding. By definition, it maximizes u"(z,) for all s € V| and
i (xs, x¢) for all (s,t) € E, and so by inspection, also maximizes F'(x; u™) for the quadratic
and proximal cases.

We next prove statement (b) on neighborhood rounding. Suppose that neighborhood
rounding outputs a single neighborhood-consistent integral configuration z*. Since x}‘v(s)
maximizes the neighborhood energy (37) at each node s € V, it must also maximize the
sum Y oy Fy(x;p™). A little calculation shows that this sum is equal to 2F (z;u"), the
factor of two arising since the term on edge (s,t) arises twice, one for neighborhood rooted
at s, and once for t.

Turning to claim (c), let z* be a tree-consistent configuration obtained from tree round-
ing. Then for each i =1, ..., K, the configuration z* maximizes the tree-structured function
F;(z; u™), and hence also maximizes the convex combination Efi 1 P(T5) Fi(z; ). By def-
inition of the edge appearance probabilities pg, this convex combination is equal to the
function F'(x;u™). [ |

4.2 Randomized Rounding Schemes

The schemes considered in the previous section were all deterministic, since (disregarding
any possible ties), the output of the rounding procedure was a deterministic function of
the given pseudomarginals {u, u?%}. In this section, we consider randomized rounding
procedures, in which the output is a random variable.

Perhaps the most naive randomized rounding scheme is the following: for each node
r € V, assign it value x, € X with probability up(z,). We propose a graph-structured
generalization of this naive randomized rounding scheme, in which we perform the rounding
in a dependent way across sub-groups of nodes, and establish guarantees for its success. In
particular, we show that when the LP relaxation has a unique integral optimum that is
well-separated from the second best configuration, then the rounding scheme succeeds with
high probability after a pre-specified number of iterations.

4.2.1 THE RANDOMIZED ROUNDING SCHEME

Our randomized rounding scheme is based on any given subset E’ of the edge set E. Consider
the subgraph G(E\E"), with vertex set V, and edge set E\E’. We assume that E’ is chosen
such that the subgraph G(E\E') is a forest. That is, we can decompose G(F\E') into a
union of disjoint trees, {T1,...,Tx}, where T; = (V;, E;), such that the vertex subsets V;
are all disjoint and V =V, U Vo U ... U Vk. We refer to the edge subset as forest-inducing
when it has this property. Note that such a subset always exists, since E' = FE is trivially
forest-inducing. In this case, the “trees” simply correspond to individual nodes, without
any edges; V; = {i}, E;=0,i=1,...,N.

For any forest-inducing subset E/ C E, Algorithm 5 defines our randomized rounding
scheme.

To be clear, the randomized solution X is a function of both the pseudomarginals ", and
the choice of forest-inducing subset E’, so that we occasionally use the notation X (u"; E’)
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Algorithm 5 RANDOMIZED ROUNDING SCHEME

for subtree indices i = 1,..., K do
Sample a sub-configuration Xy; from the probability distribution

plavip(@) = [ [ —itmte) (41)

n n :
v em P (zs) ™ (2)

end for
Form the global configuration X € XV by concatenating all the local random samples:

X = <XV1,...,XVK>.

to reflect explicitly this dependence. Note that the simplest rounding scheme of this type
is obtained by setting E' = E. Then the “trees” simply correspond to individual nodes
without any edges, and the rounding scheme is the trivial node-based scheme.

The randomized rounding scheme can be “derandomized” so that we obtain a deter-
ministic solution x%(u™; E') that does at least well as the randomized scheme does in ex-
pectation. This derandomization scheme is shown in Algorithm 6, and its correctness is
guaranteed in the following theorem, proved in Appendix D.

Theorem 6 Let (G = (V,E), 0) be the given MAP problem instance, and let u™ € L(Q)
be any set of pseudomarginals in the local polytope L(G). Then, for any subset E' C E of
the graph G, the (E', u™)-randomized rounding scheme in Algorithm 5, when derandomized
as in Algorithm 6 satisfies,

Pl E'):0) > E(F(W; ) e>),

where X (u™; E') and x%(u™; E') denote the outputs of the randomized and derandomized
schemes respectively.

4.2.2 OSCILLATION AND GAPS

In order to state some theoretical guarantees on our randomized rounding schemes, we
require some notation. For any edge (s,t) € E, we define the edge-based oscillation

0s¢(0) = max[0s(xs,z)] — min[Og(xs, )]
Ts,Tt Ts, Tt

We define the node-based oscillation 05(6) in the analogous manner. The quantities ()
and d4(0) are measures of the strength of the potential functions.
We extend these measures of interaction strength to the full graph in the natural way

5 0 = (58 9 9 55 0 .
o(6) += max{ mx 5.(6), maxa.(6)
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Algorithm 6 DERANDOMIZED ROUNDING SCHEME
Initialize: p = u".

for subtree indices i = 1,..., K do
Solve
Y, = arg max Z{es(ms) + Z Z/jt(xt)est(x&l't)} + Z Ost (s, x1).
Vi sev; t: (s,0)EE" @t (s,t)EE;
Update j:
fis(zs) ifs¢V;
fs(zs) = { 0 if s € V;,2d # x,
1 if s € V;,2d = x,.
_ ﬂst(l‘s,xt) if (S,t) ¢ EZ
Ts, T _ ~ .
ratrar) = { S o £ B
end for

Form the global configuration 2¢ € XV by concatenating all the subtree configurations:

d . _ d d
xr L= <$V17...,.’EVK>.

Using this oscillation function, we now define a measure of the quality of a unique MAP
optimum, based on its separation from the second most probable configuration. In partic-
ular, letting z* € XY denote a MAP configuration, and recalling the notation F(z;6) for
the LP objective, we define the graph-based gap

H;éiri F(x*;0) — F(x;0)
dc:(0)

A0;G) =

This gap function is a measure of how well-separated the MAP optimum x* is from the
remaining integral configurations. By definition, the gap A(f;G) is always non-negative,
and it is strictly positive whenever the MAP configuration x* is unique. Finally, note that
the gap is invariant to the translations (6 — 6 = 6 + C) and rescalings (6 — 6 = cf)
of the parameter vector #. These invariances are appropriate for the MAP problem since
the optima of the energy function F(x;6) are not affected by either transformation (i.e.,
arg max, F'(z;0) = argmax, F(x;6") for both ' =60 + C and 6’ = c0).

Finally, for any forest-inducing subset, we let d(E’) be the maximum degree of any node
with respect to edges in E'—mnamely,

d(E") := ma‘3(|t€V | (s,t) € E'|.
sE
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4.2.3 OPTIMALITY GUARANTEES FOR RANDOMIZED ROUNDING

We show, in this section, that when the pseudomarginals u™ are within a specified ¢; norm
ball around the unique MAP optimum p*, the randomized rounding scheme outputs the
MAP configuration with high probability.

Theorem 7 Consider a problem instance (G, 0) for which the MAP optimum x* is unique,
and let p* be the associated vertex of the polytope IL(G). For any e € (0,1), if at some
iteration n, we have pu™ € L(G), and

e A(0;G)

1+ d(E) (2

" = p*llr <

then (E', u™)-randomized rounding succeeds with probability greater than 1 — e,
PX(u™"E)=2" > 1-e

We provide the proof of this claim in Appendix E. It is worthwhile observing that the
theorem applies to any algorithm that generates a sequence {u"} of iterates contained
within the local polytope L(G). In addition to the proximal Bregman updates discussed
in this paper, it also applies to interior-point methods (Boyd and Vandenberghe, 2004) for
solving LPs. For the naive rounding based on E’ = E, the sequence {u"} need not belong
to L(G), but instead need only satisfy the milder conditions p?(xzs) > 0 for all s € V' and
rs€ X, and ), pg(zs) =1foralseV.

The derandomized rounding scheme enjoys a similar guarantee, as shown in the following
theorem, proved in Appendix F.

Theorem 8 Consider a problem instance (G, 80) for which the MAP optimum x* is unique,
and let p* be the associated vertex of the polytope IL(G). If at some iteration n, we have
u" € L(G), and

A(0;G)
1 S ——%0

1+ d(E")

then the (E', u™)-derandomized rounding scheme in Algorithm 6 outputs the MAP solution,

"™ —

(4" ) = o,

4.2.4 BOUNDS ON ITERATIONS FOR RANDOMIZED ROUNDING

Although Theorems 7 and 8 apply even for sequences {u"} that need not converge to p*, it
is most interesting when the LP relaxation is tight, so that the sequence {u"} generated by
any LP-solver satisfies the condition u™ — p*. In this case, we are guaranteed that for any
fixed € € (0, 1), the bound (42) will hold for an iteration number n that is “large enough”.
Of course, making this intuition precise requires control of convergence rates. Recall that
N is the number of nodes in the graph, and m is cardinality of the set X from which all
variables takes their values. With this notation, we have the following.

Corollary 9 Under the conditions of Theorem 7, suppose that the sequence of iterates {u™}
converge to the LP (and MAP) optimum at a linear rate: ||pu™—u*|la < 4™||u® —p*|l2. Then:
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(a) The randomized rounding in Algorithm 5 succeeds with probability at least 1 — e for all
iterations greater than

§ $log (Nm + N?m?) +log (||u® — p*|]2) + log (f(cé(g))) + log(1/e€)
n* = .

log(1/7)

(b) The derandomized rounding in Algorithm 6 yields the MAP solution for all iterations
greater than

$log (Nm + N?m?) +log (||u® — p*|l2) + log (%)

log(1/7)

This corollary follows by observing that the vector (u™ — p*) has less than Nm + N2m?
elements, so that ||u™ — p*|l1 < VNm+ N?m? ||u™ — p*||2. Moreover, Theorems 7 and 8
provide an ¢1-ball radius such that the rounding schemes succeed (either with probability
greater than 1 — ¢, or deterministically) for all pseudomarginal vectors within these balls.

5. Experiments

In this section, we provide the results of several experiments to illustrate the behavior of
our methods on different problems. We performed experiments on 4-nearest neighbor grid
graphs with sizes varying from N = 100 to N = 900, using models with either m = 3 or
m = b labels. The edge potentials were set to Potts functions, of the form

Ot ifxg==x
est(w&mt) = { ! !

0 otherwise.

for a parameter G5 € R. These potential functions penalize disagreement of labels if 35 > 0,
and penalize agreement if G5 < 0. The Potts weights on edges (B¢ were chosen randomly as
Uniform(—1,+1). We set the node potentials as 65(xs) ~ Uniform(— SNR, SNR), for some
signal-to-noise parameter SNR > 0 that controls the ratio of node to edge strengths. In
applying all of the proximal procedures, we set the proximal weights as w™ = n.

5.1 Rates of Convergence

We begin by reporting some results on the convergence rates of proximal updates. Fig-
ure 2(a) plots the logarithmic distance log ||u™ — p*||2 versus the number of iterations for
grids of different sizes (node numbers N € {100, 400,900}). Here p" is the iterate at step n
entropic proximal method and p* is the LP optimum. In all cases, note how the curves have
an inverted quadratic shape, corresponding to a superlinear rate of convergence, which is
consistent with Proposition 1. On other hand, Figure 2(b) provides plots of the logarithmic
distance versus iteration number for problem sizes N = 900, and over a range of signal-
to-noise ratios SNR (in particular, SNR € {0.05,0.25,0.50, 1.0,2.0}). Notice how the plots
still show the same inverted quadratic shape, but that the rate of convergence slows down
as the SNR decreases, as is to be expected.
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Convergence rates (varying SNR)
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Figure 2: (a) Plot of distance log;, ||u™ — ©*||2 between the current entropic proximal it-
erate p” and the LP optimum p* versus iteration number for Potts models on
grids with N € {100,400,900} vertices, m = 5 labels and SNR = 1. Note
the superlinear rate of convergence, consistent with Proposition 1. (b) Plot
of distance logq || — p*||2 between the current entropic proximal iterate p”
and the LP optimum p* versus iteration number for Potts models on grids
with m = 5 labels, N = 900 vertices, and a range of signal-to-noise ratios
SNR € {0.05,0.25,0.50,1.0,2.0}. The rate of convergence remains superlinear
but slows down as the SNR is decreased.

In Figure 3, we compare two of our proximal schemes—the entropic and the quadratic
schemes—with a subgradient descent method, as previously proposed (Feldman et al.,
2002a; Komodakis et al., 2007). For the comparison, we used a Potts model on a grid
of 400 nodes, with each node taking three labels. The Potts weights were set as earlier,
with SNR = 2. Plotted in Figure 3(a) are the log probabilities of the solutions from the
TRW-proximal and entropic proximal methods, compared to the dual upper bound that is
provided by the sub-gradient method. Each step on the horizontal axis is a single outer
iteration for the proximal methods, and five steps of the subgradient method. (We note
that it is slower to perform five subgradient steps than a single proximal outer iteration.)
Both the primal proximal methods and the dual subgradient method converge to the same
point. The TRW-based proximal scheme converges the fastest, essentially within four outer
iterations, whereas the entropic scheme requires a few more iterations. The convergence
rate of the subgradient ascent method is slower than both of these proximal schemes, even
though we allowed it to take more steps per “iteration”. In Figure 3(b), we plot a number
of traces showing the number of inner iterations (vertical axis) required as a function of
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Figure 3: (a) Plots of the function value (for fractional iterates u™) versus number of itera-
tions for a Potts model with N = 400 vertices, m = 3 labels and SNR = 2. Three
methods are compared: a subgradient method (Feldman et al., 2002b; Komodakis
et al., 2007), the entropic proximal method (Ent. Prox.), and the TRW-based
proximal method (TRW Prox.). (b) Traces of different algorithm runs showing
the number of inner iterations (vertical axis) versus the outer iteration number
(horizontal axis). Typically around 20 inner iterations are required.

25

outer iteration (horizontal axis). The average number of inner iterations is around 20, and
only rarely does the algorithm require substantially more.

5.2 Comparison of Rounding Schemes

In Figure 4, we compare five of our rounding schemes on a Potts model on grid graphs
with N = 400, m = 3 labels and SNR = 2. For the graph-structured randomized rounding
schemes, we used the node-based rounding scheme (so that E\E’' = {)), and the chain-
based rounding scheme (so that F\FE’ is the set of horizontal chains in the grid). For
the deterministic rounding schemes, we used the node-based, neighborhood-based and the
tree-based rounding schemes. Panel (a) of Figure 4 shows rounding schemes as applied to
the entropic proximal algorithm, whereas panel (b) shows rounding schemes applied to the
TRW proximal scheme. In both plots, the tree-based and star-based deterministic schemes
are the first to return an optimal solution, whereas the node-based randomized scheme is
the slowest in both plots. Of course, this type of ordering is to be expected, since the
tree and star-based schemes look over larger neighborhoods of the graph, but incur larger
computational cost.
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Rounded cost versus iteration (Ent. Prox.) Rounded cost versus iteration (TRW Prox.)
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Figure 4: Plots of the log probability of rounded solutions versus the number of iterations for
the entropic proximal scheme (panel (a)), and the TRW proximal scheme (panel
(b)). In both cases, five different rounding schemes are compared: node-based
randomized rounding (Node Rand.), chain-based randomized rounding (Chain
Rand.), node-based deterministic rounding (Node. Det.), star-based deterministic
rounding (Star Det.), and tree-based deterministic rounding (Tree Det.).

6. Discussion

In this paper, we have developed distributed algorithms, based on the notion of proximal
sequences, for solving graph-structured linear programming (LP) relaxations. Our methods
respect the graph structure, and so can be scaled to large problems, and they exhibit
a superlinear rate of convergence. We have also developed a series of graph-structured
rounding schemes that can be used to generate integral solutions along with a certificate
of optimality. These optimality certificates allow the algorithm to be terminated in a finite
number of iterations.

The structure of our algorithms naturally lends itself to incorporating additional con-
straints, both linear and other types of conic constraints. It would be interesting to develop
an adaptive version of our algorithm, which selectively incorporated new constraints as
necessary, and then used the same proximal schemes to minimize the new conic program.
Our algorithms for solving the LP are primal-based, so that the updates are in terms of the
pseudo-marginals p that are the primal parameters of the LP. This is contrast to typical
message-passing algorithms such as tree-reweighted max-product, which are dual-based and
where the updates are entirely in terms of message parameters that are the dual parameters
of the LP. However, the dual of the LP is non-differentiable, so that these dual-based up-
dates could either get trapped in local minima (dual co-ordinate ascent) or have sub-linear
convergence rates (dual sub-gradient ascent). On the one hand, our primal-based algorithm
converges to the LP minimum, and has at least linear convergence rates. On the other,
it is more memory-intensive because of the need to maintain O(|E|) edge pseudo-marginal
parameters. It would be interesting to modify our algorithms so that maintaining these
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explicitly could be avoided; note that our derandomized rounding scheme (Algorithm 4.2.1)
does not make use of the edge pseudo-marginal parameters.
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Appendix A. Corrections to Bregman Projections

We briefly outline the corrections needed to cyclic Bregman projections for the case where
the constraints are linear inequalities. It is useful, in order to characterize these needed
corrections, to first note that these cyclic projections are equivalent to co-ordinate ascent
steps on the dual of the Bregman projection problem (14). Let the linear constraint set
for the Bregman projection problem (14) be C' = N;{(a;, p) < b;}. Its Lagrangian can be
written as

L(p,z) = Dy(pllv) + Z zi((ai, p) = bi),

where z > 0 are the Lagrangian or dual parameters. The dual function is given as g(z) =
min, £(4, z), so that the dual problem can be written as

min g(2).

If the constraints were linear equalities, the dual variables {z} would be unconstrained,
and iterative co-ordinate ascent—which can be verified to be equivalent to cyclic projec-
tions of the primal variables onto individual constraints—would suffice to solve the dual
problem. However, when the constraints have inequalities, the dual problem is no longer
unconstrained: the dual variables are constrained to be positive. We would thus need
to constrain the co-ordinate ascent steps. This can also be understood as the following
primal-dual algorithmic scheme. Note that a necessary KKT condition for optimality of a
primal-dual pair (u,z) for (14) is

V) = Vi) = s (43)

i

The primal-dual algorithmic scheme then consists of maintaining primal-dual iterates (uf, zt)
which satisfy the equality (43), are dual feasible with 2z > 0, and which entail co-ordinate
ascent on the dual problem, so that g(z/*t!) > g(z!) with at most one co-ordinate of u’
updated in pf*!. We can now write down the corrected-projection update of u! given the
single constraint C; = {{a;, u) < b;}. According to the primal-dual algorithmic scheme this
corresponds to co-ordinate ascent on the i-th co-ordinate of 2! so that (43) is maintained,
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whereby
Vit = Vi) +Ca, (44)
AT = 2 Cey,
C = min{z}, 5},
where e; is the co-ordinate vector with one in the i-th co-ordinate and zero elsewhere, and

0 is the i-th dual parameter setting corresponding to an unconstrained co-ordinate ascent
update,

Vi) = V") +Ba, (45)
(1, a;) = b

One could derive such corrections corresponding to constrained dual ascent for general
convex constraints (Dykstra, 1985; Han, 1988).

Appendix B. Detailed Derivation of Message-passing Updates

In this appendix, we provided detailed derivation of the message-passing updates for the
inner loops of the algorithms.

B.1 Derivation of Algorithm 2

Consider the edge marginalization constraint for edge (s,t), Li(G) = >, psi(vs,7¢) =
is(zs). Denoting the dual (Lagrange) parameter corresponding to the constraint by Ag (),
the Karush-Kuhn-Tucker conditions for the quadratic update (21) are given by

Va(uy ™ (@e, 1) = Va(ul (zs,20)) + Aatls),
Va(ug™ ) = Va(usT (z)) = Ase(ws),
N?tT—i—l(l‘& Ty) = NstT(x& Ty) + Ase (),
peT  @s) = T (s) = Ase(s),

while the constraint itself gives

Zu“ T e ) = ().

Solving for Ay (xs) yields Equation (23). The node marginalization follows similarly.

The only inequalities are the positivity constraints, requiring that the node and edge
pseudomarginals be non-negative. Following the correction procedure for Bregman projec-
tions in (44), we maintain Lagrange dual variables corresponding to these constraints. We
use Zs(xs) as the Lagrange variables for the node positivity constraints ps(xs) > 0, and
Zsi(xs,x¢) for the edge-positivity constraints pg(xs, x¢) > 0.

Consider the projection of {71} onto the constraint us(zs) > 0. Following (45), we
first solve for (4(xs) that satisfies

ps(xs) = :UZTJrl( s) — Bs(ws),
ps(xs) = 0,
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so that Sy(zs) = uo" ! (z,). Substituting in (44), we obtain the update

Cs(zs) = min{ZS(xs)7Mgn’TJrl)(xS)L
Zs(xs) = Zs(ajs)_cs(xs)a

Ngn’T+1)(x8) = Ngn’T+1)(x8)_CS(x8)'

The edge positivity constraint updates follow similarly.
Thus overall, we obtain message-passing Algorithm 2 for the inner loop.

B.2 Derivation of Algorithm 3

Note that we do not need to explicitly impose positivity constraints in this case. Because
the domain of the entropic Bregman function is the positive orthant, if we start from a
positive point, any further Bregman projections would also result in a point in the positive
orthant.

The projection p™7 1 = II;,(u™7, L;(G)) onto the individual constraint L;(G) is defined
by the optimization problem:

nT+1l : h . TVh Ty
[ ﬁlg){ (1) = p Vh(u™)}

Consider the subset L;(G) defined by the marginalization constraint along edge (s,t),
namely Z%GX pst(zs, ;) = ps(zs) for each x5 € X. Denoting the dual (Lagrange) pa-
rameters corresponding to these constraint by Mg (xs), the KKT conditions are given by

Vh(:u?t’ﬂ—l(x&xt)) = Vh(ﬂ?t’T(xSawt))‘i’)\st(xs)a and
Vh(pe ™ (x)) = VR (x5)) = Ast(xs).

Computing the gradient VA and performing some algebra yields the relations

pT W g, x) = g (@ ) exp AT (),
pm D (@) = p ) (@) exp(=AGT Y (z,)),  and
(n,7+1) Mgnﬂ—)(xs)
exp@ATT () =

S, 1 (g, 1)

from which the updates (26) follow.
Similarly, for the constraint set defined by the node marginalization constraint
> p.ex Ms(xs) =1, we have Vh(,ugn’ﬂ'l)(xs)) = Vh(ugn’T) (xs)) + )\gn’TH), from which

,Ugn’ﬂ—l)(l‘s) = :ugnﬂ—)(ms) eXp()‘gnﬂ——i—l))’ and
eXp()\gn,T—i—l)) _ 1/ Z Hgn’T)(xs)'
TsEX

The updates in Equation (28) follow.
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Appendix C. Proof of Lemma 4

We provide a detailed proof for the entropic scheme; the arguments for other proximal
algorithms are analogous. The key point is the following: regardless of how the proximal
updates are computed, they must satisfy the necessary Lagrangian conditions for optimal
points over the set L(G). Accordingly, we define the following sets of Lagrange multipliers:

Ass for the normalization constraint Cs(ps) =,/ ,us( )—1=0,
Ast(Ts) for the marginalization constraint Cys(zs) = Zx; pst(zs, 2p) — ps(zs) =0,
Vst (s, x4) for the non-negativity constraint g (s, x¢) > 0.
(There is no need to enforce the non-negativity constraint ps(xs) > 0 directly, since it
is implied by the non-negativity of the joint pseudo-marginals and the marginalization
constraints. )

With this notation, consider the Lagrangian associated with the entropic proximal up-
date at step n:

L(Q:; )‘7 7) = C(M; 9; Nn) + <’Yy /~L> + Z )‘ssCss(st) + Z [Ats($s)cts(xs) + )\st(xt)cst(xt)]a

seV (s,t)eE

where C(u; 6, u™) is shorthand for the cost component — (0, p) + —= Do (1t || p™). Using C,C’
to denote constants (whose value can change from line to line), we now take derivatives to
find the necessary Lagrangian conditions:

oL 2
= —0O4(xs) + O;S log ——= s (Ts) 4+ C 4 Ags + Z Ats(Ts), and
8#5(335) w Ms( ) LEN(s)
L 2
0 = —Ogu(xs, ) + Gt log pse(@s, 1) + C" 4 Yt (5, 24) — Ms(@s) — Aot (@)

Opst (s, Tt) wn oy (s, ¢)

Solving for the optimum = pu"t! yields

2c
lr) = B(zs) + —logus Ts) Z Ats(s)
tEN(s)

2 2c¢
= logu ($57xt) = est(x87$t) + w—,jt IOgMZt(J:s:xt) - ’Yst(l‘s,l“t)

+)\t5(l‘s) + /\st(ajt) + C/.

From these conditions, we can compute the energy invariant (40):

2 2 2006t
JF( n+1) = Z wns logMnJrl( s) + Z w—s log ,u?t—i_l(xs,mt) +C
seV (s,t)EE
2
= Pt + 2 Santogi e+ Y aulonsthlona)
seV (s,t)EE
- Z 75t($5uxt) +C
(s,t)EE
2
= F(x;0)+ EF(@“;M”) - Z Yot (zs, 2¢) + C.

(s,t)ER
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Now since p™ > 0, by complementary slackness, we must have s (s, 2¢) = 0, which implies
that

—F(z;p"™) = F(a:;@)—F%F(x;u")—FC. (46)

From this equation, it is a simple induction to show for some constants =, > 0 and
Cp € R, we have F(z;u") = v, F(x;0) + Cy, for all iterations n = 1,2,3, ..., which implies
preservation of the maximizers. If at iteration n = 0, we initialize u° = 0 to the all-uniform
distribution, then we have %F(m, ,ul) = F(x;60) + C/ so the statement follows for n = 1.
Suppose that it holds at step n; then = F(z; wn v, F(x;0) + , and hence from the

u") =
induction step (46), we have F(x; ,u”“) Yn+1F(2;0) + Cpt1, Where Vnt1 = &V

Appendix D. Proof of Theorem 6

Consider the expected cost of the configuration X (u™; E’) obtained from the randomized
rounding procedure of Algorithm 5. A simple computation shows that

K

E[F(X(u"; E");0)] = G(p) := > _ H(u"T,) + H(u"; E'),
=1

where

H(u™T;) = ZZN?($S)08(xS)+ Z Zugt($37l‘t)95t($37$t), (47)

s€V; Ts (s,t)EE; Ts,Tt

H(u™E') := Z ZMZ(xu)NZ($v)est(xu7$v)~

(u,w)ER' Ts,xt

We now show by induction that the de-randomized rounding scheme achieves cost at
least as large as this expected value. Let ﬂ(i) denote the updated pseudomarginals at
the end of the i-th iteration. Since we initialize with (%) = p", we have G(a(®) =
E[F(X(u™; E');0)]. Consider the i-th step of the algorithm; the algorithm computes the
portion of the de-randomized solution :1:“1,1, over the ¢—th tree. It will be convenient to use

the decomposition G = G; + G\;, where

=ZZus(xs){9s($s)+ . 2 um) Msvw}*

seV; xs {t| (s,t)eE’} ¢

ST Giarlwe w) ar (@, ),

(s,t)EE; Ts,Tt

and G\; = G — G;. If we define

V) = Z {93(373 Z Zﬂ(z_ ) wt Ost $s>$t }+ Z Hst l‘s,l‘t)

seV; t: (s,t)EE’ Tt (s,t)EE;
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it can be seen that G;(u("1) = E[F;(xy,)] where the expectation is under the tree-
structured distribution over Xy, given by

)
) 26D pote )
p(xV Y H K .TS H ﬂ(iil) (ljs),a(iil) (.Tt) .

seV; (s,t)EE;

Thus when the algorithm makes the choice xc‘lfi = argmaxg,, F;(xy;), it holds that
Gi(a"™Y) = E[Ri(nv)] < R().

The updated pseudomarginals i) at the end the i-th step of the algorithm are given
by,

| Al () itsgV;
i (xs) = { 0 if s € Vi, Xas # @5
1 if s € Vi,Xd,s = Ts.

{ il Ve, m) i (st) ¢ By
i ()i (@) if (s.t) € B;.

In other words, (") (T;) is the indicator vector of the maximum energy sub-configuration
xc‘lfl. Consequently, we have

,ag?(x&l't) =

Gi(i") = Fi(at) > Gi(p"Y),

and G\i(’(i)) = G\z(/j(i_l)), so that at the end of the i-th step, G(a") > G(a~Y). By
induction, we conclude that G(a)) > G (")), where K is the total number of trees in the
rounding scheme.

At the end of K steps, the quantity (%) is the indicator vector for z%(;™; E') so that
G(a¥)) = F(Xq(u™; E'); 0). We have also shown that G(i(?)) = E[F(X (u"; E'); 0)]. Com-
bining these pieces, we conclude that F(z%(u™; E');0) > E[F(X (u™; E');0)], thereby com-
pleting the proof.

Appendix E. Proof of Theorem 7

Let psuee = PX (" E') = 2*], and let R(u"; E') denote the (random) integral vertex
of L(G) that is specified by the random integral solution X (u"; E’). (Since E’ is some
fixed forest-inducing subset, we frequently shorten this notation to R(u™).) We begin by
computing the expected cost of the random solution, where the expectation is taken over the
rounding procedure. A simple computation shows that E[(6, R(u"))] := >0, H(u™; T;) +
H(u™ E'), where H(u";T;) and H(u"; E') were defined previously (47).

We now upper bound the difference (0, p*) — E[(0, R(u"))]. For each subtree i =
1,..., K, the quantity D; := H(u*;T;) — H(u; T;) is upper bounded as

D; = Z Z[MS xs :us Ts :| Z Z |::us Ts ,Ut xt ,U?t(ws»xt) Hst(w&xt)

seV; Ts (s,t)EE; TsyTt

D8O lus(ws) = ui (@)l + Y 6a(0) D k(s me) — (s, )

SGV;; Ts (S,t)GEi Ts,Tt

IN
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In asserting this inequality, we have used the fact that that the matrix with entries given
by pi(xs)p; (xe) — pi (s, x¢) is a difference of probability distributions, meaning that all its
entries are between —1 and 1, and their sum is zero.

Similarly, we can upper bound the difference D(E’) = H(u*; E') — H(u"; E') associated
with E’:

DE) = XS i) - i) o)

(u,v)EE! Tu,Ty

<D w0 D @) p(@) - p(wa)p (@)
(u,v)EE! T, Ty

<D dwl) Y { P () [ () = paay ()] ||y () [, (@) — g ()] }
(u,v)EE’ T, Ty

< X o) { it - il + X i) - wie)l
(u,v)EE! Ty Tu

Combining the pieces, we obtain

(0, n*) = E[{8, R(u"))] < 5G(9){Hu” WY d(ss BN Y () — Mi(ﬂﬁs)l}

seV Ts
< (L+d(E))sc )k — p |- (48)

In the other direction, we note that when the rounding fails, then we have

(0, u*) = (0, R(u")) = g;a;g[F(fC*;H)—F(fC;G)]-

Consequently, conditioning on whether the rounding succeeds or fails, we have
(0, ) —E[O, R(u")] > psuce [(0; 1) — (0, )] + (1 = Psuce) max|F (% 0) — F(:6)]
= (1 — psucc) max[F(z*;0) — F(x;0)].
r#x*
Combining this lower bound with the upper bound (48), performing some algebra, and

using the definition of the gap A(6; G) yields that the probability of successful rounding is
at least

(1 +d(£")) .
> _ — .
DPsuce = 1 A(Q,G) ||:U' H ||1

If the condition (42) holds, then this probability is at least 1 — €, as claimed.

Appendix F. Proof of Theorem 8
The proof follows that of Theorem 7 until Equation (48), which gives

(O, p*) —E[(O, R(u"))] < (1 +d(E"))0a(0) I — p|1-
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Let v4(u"; E') denote the integral vertex of L(G) that is specified by the de-randomized
integral solution 2¢(u"; E'). Since E' is some fixed forest-inducing subset, we frequently
shorten this notation to v¥(u™). Theorem 6 shows that

E[(0, R(u"))] < (0, v (u™)).

Suppose the de-randomized solution is not optimal so that v?(u") # p*. Then, from
the definition of the graph-based gap A(6;G), we obtain

(0, 1%y = (0, v (™)) = 66(0) A(; G).
Combining the pieces, we obtain

Sa(0) A(;G) < (0, 1) — (B, v (u™))
< (0, ") —E[0, R(1"))]
< A+ dE)) @)™ —ph,

which implies ||pu™ — p*||1 > ﬁ_(dei(;g,)). However, this conclusion is a contradiction under
the given assumption on ||u™ — p*||; in the theorem. It thus holds that the de-randomized

solution v4(u") is equal to the MAP optimum p*, thereby completing the proof.
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