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Abstract

In this paper, we study the problem of active
learning for cost-sensitive multiclass classifi-
cation. We propose selective sampling algo-
rithms, which process the data in a stream-
ing fashion, querying only a subset of the la-
bels. For these algorithms, we analyze the
regret and label complexity when the labels
are generated according to a generalized lin-
ear model. We establish that the gains of ac-
tive learning over passive learning can range
from none to exponentially large, based on a
natural notion of margin. We also present a
safety guarantee to guard against model mis-
match. Numerical simulations show that our
algorithms indeed obtain a low regret with a
small number of queries.

1. Introduction

The problem of active learning has received a lot of
attention in the context of binary classification prob-
lems, both from a theoretical and an applied perspec-
tive. On the theoretical side, a series of works have
studied a variety of efficient and inefficient methods
with a small query complexity; an incomplete bibli-
ography includes (Cohn et al., 1994; Dasgupta et al.,
2007; Beygelzimer et al., 2009; 2010; Hanneke, 2011;
Cesa-Bianchi et al., 2009; Dekel et al., 2010). In com-
parison, there has been relatively little work on the
more general scenario of multiclass classification, at
least from a theoretical standpoint. Bulk of the work
on multiclass active learning has been developed in the
computer vision community, with a focus on scalable
algorithms and good empirical performance (see e.g.
Yan et al., 2003; Jain & Kapoor, 2009; Joshi et al.,
2012). Compelling applications of course arise in other
domains such as text and webpage categorization,
computational biology (Luo et al., 2005) and more
generally under the umbrella of structured output pre-
diction problems (Roth & Small, 2006). However, lit-
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tle is known about the label complexity and error of
these approaches from a theoretical standpoint. An in-
teresting aspect of multiclass classification is that the
desired criterion is often not a 0/1 loss, but is speci-
fied by a general cost matrix C. In such scenarios, we
would like to further understand how the cost matrix
influences our active querying strategy, and how its
structure helps or hurts the loss and label complexity
of active learning.

In this paper, we directly tackle the problem of
cost-sensitive multiclass classification. Our focus
is on obtaining efficient algorithms, with provable
guarantees on the error as well as the label com-
plexity. To this end, we build on the selec-
tive sampling framework for online active learning,
pioneered in the binary setting by Cesa-Bianchi,
Gentile and co-authors (Cesa-Bianchi et al., 2009;
Orabona & Cesa-Bianchi, 2011; Dekel et al., 2010;
Gentile & Orabona, 2012). In particular, we con-
sider a generalized linear model (GLM) setting for
multiclass classification. This is related to, but dif-
ferent from the multilabel setting of Gentile and
Orabona (2012) where each label could occur indepen-
dently, given a data point x. Our first contribution is
to establish a connection between conditional proba-
bility estimation and cost-sensitive loss minimization.
We also show how to obtain consistent conditional
probability estimates (for the label to be i, given x).
We further construct query rules that utilize these
probability estimates in order to select which data
points to query the labels for.

Our results bound the regret to the Bayes predictor
(under the cost matrix) of our algorithm, as well as the
label complexity for our query rules. These guarantees
hold for a completely general (possibly adversarial) se-
quence of data vectors xt, as long as our GLM assump-
tion holds. We also pose a generalization of the Tsy-
bakov margin condition (Tsybakov, 2004) from binary
classification and establish fast rates for active multi-
class learning under this condition. Our results show
that the gains of active learning over passive are as
good as exponential in the most favorable case where
a hard margin is present between the conditional prob-
abilities of the best and the second best class for each
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data point. To our knowledge, these are the first such
theoretical results for multiclass active learning.

Since our approach is based on online convex opti-
mization, it lends itself to efficient algorithms. We
also provide an easy technique to ensure that our algo-
rithm would never do worse than random subsampling
even under model mismatch, while performing much
better in favorable scenarios. Finally, we complement
our theoretical analysis with experimental evaluation
in numerical simulations, where our methods do yield
label complexity gains, and continue to be robust to
model mismatch to a certain degree.

The remainder of this paper is organized as follows. In
the next section, we describe our setup and assump-
tions. Section 3 presents our algorithm along with
various query criteria. We describe our main results
and their important consequences in Section 4, with
simulation results in Section 5. Proofs of our results
are deferred to the supplement.

2. Setup and assumptions

We start by describing the generative model we assume
for multiclass classification problems along with some
assumptions about the model.

2.1. Generalized linear models for
cost-sensitive classification

We assume that we have a total of K classes, and
the labels are generated based on a generalized linear
model. Specifically, we assume that we have a weight
matrix W ∗ ∈ R

K×d with one weight vector per class.
We further assume that W ∗ ∈ W ⊆ R

K×d, for some
convex set W, with W ∗

K = 0 wlog to avoid an over-
complete representation. Given a covariate x ∈ R

d,
we associate a label vector y ∈ R

K with an entry of
1 for the correct class and zeros elsewhere. Denoting
the canonical basis vectors by {ei ∈ R

K}, we assume
that the labels are generated according to the GLM

P(y = ei |W ∗, x) = 〈∇Φ(W ∗x), ei〉 , (1)

where Φ(·) : R
K 7→ R is a convex function. In words,

Φ is a function that takes a vector in R
K and maps it

to a probability vector via its gradient. To get some in-
tuition about this definition, consider the special case
where P(y |W ∗, x) is the canonical exponential family
with sufficient statistics y. In this case, the function
Φ corresponds to the log-partition function of the ex-
ponential family which is always convex (Lauritzen,
1996). As particular special cases, our family includes
the multiclass logit model, as well as a linear noise
model. We need some additional assumptions regard-
ing the function Φ.

Assumption 1. The function Φ(·) is γℓ-strongly con-
vex, that is for all u, v ∈ S ⊆ R

K , we have

Φ(u) ≥ Φ(v) + 〈∇Φ(v), (u− v)〉+ γℓ
2
‖u− v‖22. (2)

In applications of the assumption, the set S will be
picked so that the assumption is satisfied (with high
probability) for all the vectors of form Wx with W ∈
W and x ∈ R

d (x drawn from underlying population).
We also require an analogous upper bound.

Assumption 2. The function Φ(·) is γu-smooth, that
is for all vectors u, v ∈ S ⊆ R

K , we have

Φ(u) ≤ Φ(v) + 〈∇Φ(v), (u− v)〉+ γu
2
‖u− v‖22. (3)

We also make one assumption regarding the set of pre-
dictors W and the data x.

Assumption 3. ∀x ∈ X , we have ‖x‖2 ≤ R and
∀W ∈ W, we have ‖W i‖2 ≤ ω for all i = 1, 2, . . . ,K.1

In particular, the assumption implies that our pre-
dictions 〈Wi, x〉 are bounded by Rω for each i =
1, 2, . . . ,K. Based on the above model, our methods
will be defined in terms of the loss function

ℓ(Wx, y) = Φ(Wx)− yTWx. (4)
The motivation behind using this definition is that this
loss function is calibrated for our noise model, meaning
that for each x

argmin
W

E[ℓ(Wx, y) | x] =W ∗,

using our generative model (1). Assumptions 1 and 2
further imply that the loss is smooth and strongly con-
vex as a function of the prediction vectorWx. We now
describe a couple of concrete examples of our model to
illustrate our assumptions.

2.2. Some motivating examples

Here we focus on examples of the probabilistic
model (1) and the corresponding assumptions on the
function Φ. We start with a multiclass logistic noise
model and then describe a linear model.

Example 1 (Multiclass logistic regression). The mul-
ticlass logistic model corresponds to choosing the func-
tion Φ(Wx) = log(

∑K
i=1 exp(x

TW i)). This gives rise
to the conditional probability model

P(Y = i |W,x) = exp(xTW i)
∑K
j=1 exp(x

TW j)
,

which is the well-known multinomial logit model. It is
easily checked that the loss function (4) for this setting
is the multiclass logistic loss log(1+

∑
i6=y exp(x

TW i−
xTW y)). For this setting, we assume that Assump-
tion 3 is satisfied with ω = R = 1. With these bounds,
it can be checked that the function Φ satisfies Assump-
tions 1 and 2 with constants 1/(eK2) and 1, resp. 2

1W i ∈ R
d is the ith row of W .

2Strong convexity can be improved by rescaling the loss
to instead use exp(xTW i/σ) for some σ > 0.
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Figure 1. Examples of structured cost matrices (see text)

Example 2 (Multiclass linear regression). Unlike the
multiclass logistic case, there is no standard definition
for a multiclass linear model. We consider

P(Y = i|W,x) = xTW i − (

K∑

j=1

xTW j − 1)/K.

The induced probabilities are non-negative assuming
xTW i − xTW j ≤ 1/K for all i 6= j, and they al-
ways add up to 1. This is also the natural gen-
eralization of the linear model for binary classifica-
tion (Cesa-Bianchi et al., 2009). The induced func-
tion Φ for this case is

K∑

i=1

(xTW i)2/2−
( K∑

j=1

xTW j − 1
)2
/(2K).

It is easily checked that Assumptions 1 and 2 are sat-
isfied with constants 1− 1/K and 1 respectively.

2.3. Cost-sensitive multiclass classification

In the problem of cost-sensitive multiclass classifica-
tion, we are given a cost matrix C ∈ R

K×K with non-
negative entries and zeros on the diagonal. These as-
sumptions are without loss of generality. Here C(i, j)
is the cost of predicting j when the true label is i.
The simplest example of a cost matrix is the one cor-
responding to the 0/1 loss for multiclass classification:

C(i, j) =

{
0 if i = j
1 otherwise

. (5)

However, the more general setting allows us to penalize
mistakes involving different class pairs differently. For
instance, one could imagine a block-structured matrix
with zeros on the diagonal blocks (Fig. 1(a)). This cor-
responds to groups of similar classes, with no penalty
for mistakes within a group and a high penalty for mis-
takes across groups. Another example is a tree struc-
tured cost matrix, where the classes are organized into
a tree hierarchy (e.g. in hierarchical classification) and
the cost of a mistake is the tree-distance between the
two classes (Fig. 1(b)).

Given such a cost-matrix, the quality of a prediction
ŷ for a point x is measured by the expected cost:

E[C(Y, ŷ) | x] =
K∑

i=1

C(i, ŷ)(∇Φ(W ∗x))i.

In the sequel, we will measure the performance of our
algorithms in the regret to the best weight matrixW ∗,
as measured by this expected cost-sensitive loss.

3. Selective sampling for multiclass

classification

In this section we present our algorithms for the cost-
sensitive multiclass classification setting. We first
present an algorithm for an arbitrary choice of a query
function. We then give concrete examples of query
functions that we consider in our work.

3.1. Algorithm

Our algorithms build on a growing body of
work on selective sampling algorithms for on-
line active learning by Cesa-Bianchi, Gen-
tile and co-authors (Cesa-Bianchi et al., 2009;
Orabona & Cesa-Bianchi, 2011; Dekel et al., 2010).
In order to describe the algorithm, we need some
additional notation.

Given a weight matrix W and a data point x, it will
be convenient to define the score of a class i as

SxW (i) =

K∑

j=1

(max
a,b

C(a, b)− C(j, i))(∇Φ(Wx))j . (6)

In the simpler setting with the 0/1 multiclass loss, we
see that SxW (i) = (∇Φ(Wx))i. We start with an easy
lemma.

Lemma 1. Given a cost matrix C, suppose the
class conditional probabilities follow the probabilistic
model (1) based on a weight matrix W ∗. Then the
Bayes optimal classifier predicts as argmaxi S

x
W∗(i).

This intuition will be important in going from scores
to predictions in our algorithm. Before describing the
algorithm, we mention a couple of more important no-
tations. We use the indicator variables Zt ∈ {0, 1} to
indicate whether the label was queried at time t or not.
Given γ > 0, we define the matrix

Mt =
t−1∑

s=1

Zsxsx
T
s +

γ

γℓ
I. (7)

At time t, we denote the history of past x’s and the
queried labels as Ht. Formally,

Ht = {xs : 1 ≤ s < t and ys : Zs = 1} (8)

In Algorithm 1, we describe a generic algo-
rithmic template that takes a query function
Q : X × {X × {1, 2, . . . ,K}}t−1 7→ {0, 1} and
queries yt if Q(xt, Ht) = 1. We give examples of the
query function after presenting the general algorithm.

The update rule (9) does not use the cost matrix be-
cause our algorithm is based on consistent conditional
probability estimation under the generative model (1).
The update rule (9) estimates a weight matrix Wt

which is close to W ∗, which is then mapped to a pre-
diction as in Lemma 1.
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Algorithm 1 CS-Selectron algorithm for selective
sampling in cost-sensitive multiclass classification

Require: Query function Q, regularization parame-
ter γ > 0 and cost matrix C.
Initialize W1 = 0, M1 = γI/γℓ.
for all time steps t = 1, 2, . . . , T do
Observe instance xt ∈ X , Ht+1 = Ht ∪ {xt}.
Predict ŷt as argmaxi=1,2,...,K S

xt

W
t

(i).

if Q(xt, Ht) = 1 then
Query label yt
Update Zt = 1, Ht+1 = Ht+1 ∪ {yt} and
Mt+1 =Mt + xtx

T
t .

Update Wt according to the rule

Wt+1 = arg min
W∈W

{

t
∑

s=1

Zsℓ(Wxs, ys) + γ‖W‖2F

}

.

(9)

end if
end for

Before we move on to discuss the query functions,
we will make some remarks about the computational
properties of Algorithm 1. The algorithm might seem
computationally challenging since it requires us to
solve a loss minimization problem over all the queried
samples at each step. This is not an issue, however,
since warm-start at the previous solution is a fairly
good guess in most cases. Indeed, the most expensive
step of our algorithm is not the update rule (since it
only occurs when we query), but the computation of
the quadratic form xtM

−1
t xt at each step t, which will

be used in all our query criteria. While this computa-
tion seems unavoidable to us at this time, it seems
possible to use approximate SVD computations us-
ing ideas from randomized linear algebra (Halko et al.,
2011; Clarkson & Woodruff, 2009) which exploit the
low-rank structures common to natural datasets.

3.2. Query functions

There have been different query functions that have
been considered in previous works on selective sam-
pling in the binary classification setting and we de-
scribe their multiclass variants below. In order to de-
fine the criteria, we need define some additional nota-
tion. We define the following quantities of interest:

y∗
t = arg max

i=1,...,K
Sxt

W∗(i), y
′

t = argmax
i 6=y∗

t

Sxt

W∗(i)

ŷt = arg max
i=1,...,K

Sxt

W
t
(i), y

′′

t = argmax
i 6=ŷt

Sxt

W
t
(i). (10)

In words, y∗t and y
′

t are the optimal and second-best
classes as per the true weight matrix W ∗. ŷt and y

′′

t

are our best estimates of these classes based on our
weight matrix Wt. We now define our query rules. We

will use 11 {A} to denote the indicator of an event A.

• BBQ selection rule: This rule was introduced
in the work of Cesa-Bianchi et al. (2009):

Q(xt, Ht) = 11
{
‖xt‖2M−1

t

≥ t−κ
}
, (11)

for some κ ∈ (0, 1). This rule turns out to be
applicable in the multiclass setting as is. The in-
tuition behind this rule is that if the current data
point xt is captured well by the linear span of
the previously queried data points, then we can
make a confident prediction regarding the label
yt. The exponent κ is the parameter that governs
the trade-off between the number of queries the
algorithm makes and the regret it incurs.

• BBQǫ selection rule: This rule is a slight mod-
ification of the BBQ query criterion, and uses a
query function

Q(xt, Ht) = 11
{

ηǫ‖xt‖2M−1
t

≥ ǫ2
}

, (12)

where ηǫ > 0 is a function dependent on C and Φ
which controls the distance between Wt and W

∗,
to be specified later. ǫ is a parameter of the al-
gorithm. The intuition behind this rule is that at
the rounds where we don’t query, we will be guar-
anteed that the difference between predictions of
Wt and W

∗ on xt is at most ǫ whp.

• DGS selection rule: This query criterion is a
modification of a rule that was proposed in the
work of Dekel et al. (2010) in the context of bi-
nary classification, and takes not only the previ-
ous covariates, but also the observed labels ys into
account. The query function for this criterion in
the multiclass setting is

11
{

Sxt

W
t
(ŷt)− Sxt

W
t
(y

′′

t ) ≤ ηDGS ‖xt‖M−1
t

}

. (13)

The intuition behind this rule is that on the
rounds where we do not query the label yt, we
are guaranteed (whp) that either ŷt = y∗t , or the
regret is small.

4. Main results and their consequences

In this section we state the main results regarding the
performance and the query complexity of Algorithm 1,
and obtain some illustrative corollaries. We conclude
the section with a safety guarantee for scenarios where
our modeling assumption (1) is not valid.

4.1. Regret and label complexity

At a high level, we will demonstrate that the aver-
age regret of our algorithm vanishes with the number
of queries NT at a rate which adapts to the hard-
ness of the problem. In the worst case, the rate is
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Õ(1/
√
NT ), which is also achieved by random sub-

sampling. In the best case, our average regret van-
ishes exponentially fast in NT , while random sub-
sampling can only achieve an error of Õ(1/NT ) in
this case (Daniely et al., 2011). An extension of Tsy-
bakov’s margin condition (Tsybakov, 2004) allows for
a smooth interpolation between the two extremes,

yielding rates that are Õ(N
−(1+α)/2
T ) as α ranges from

0 (noisy) to ∞ (hard-margin).

In order to define regret, we recall our earlier defini-
tion (8) of Ht and further define Ft = σ{Ht ∪ xt}.
In words, Ft is the sigma field generated by x1, . . . , xt
along with all the labels we have seen before round t.
Our results are stated in terms of the regret:

RT =

T∑

t=1

(E[C(Yt, ŷt) | Ft]− E[C(Yt, y
∗
t ) | Ft]) (14)

Observe that the regret is incurred on each round, re-
gardless of whether we query or not. Our results will
involve the following quantity which counts the num-
ber of hard to classify points, modulated at a level ǫ
Tǫ = {1 ≤ t ≤ T : Sxt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ}. (15)
For any class i, we define the average cost as C̄i =∑
j C(j, i)/K and the column-variation in the costs as

σ2(C) = max
i=1,2,...,K

K∑

j=1

(C(j, i)− C̄i)
2. (16)

This definition captures the variation of the cost ma-
trix, making it invariant to adding a constant to each
column of the cost matrix. We also use the shorthand

ψ(C,Φ) = σ2(C)γ2u/γ
2
ℓ , (17)

which will capture our dependence on the cost matrix
and the link function Φ. With this notation, we can
now state our main results. We start with a result
for the BBQǫ query criterion. We do not give any
results for the BBQ criterion, but similar guarantees
can be obtained by combining our techniques with the
previous works of Cesa-Bianchi et al. (2009; 2011).

For ease of presentation of our results, let us define

θt =
8
√
dK

γℓ

√

log
(

1+
2R2γℓ

γ

)

log
dKt

δ
+

√

2γω2

γℓ
. (18)

In the first theorem, we use BBQǫ rule with
ηǫ = 4σ2(C)γ2uθ

2
t .

Theorem 1 (BBQǫ rule). Suppose we receive labels
generated according to the model (1) and Assump-
tions 1-3 are satisfied. Suppose we run Algorithm 1
with the BBQǫ query criterion using some ǫ > 0 and
γ = γℓ. Then, for T ≥ 3 and 0 < δ < 1/e, with
probability 1− 2δ the regret is at most

RT = Õ

(
ǫTǫ + ψ(C,Φ)

d

ǫ
log

1

δ

)
.

The number of queries made is at most

NT = Õ

(
ψ(C,Φ)

d2K

ǫ2

)

A qualitatively similar result also holds for the DGS
criterion. In this case we use ηDGS = 2σ(C)γu θt.

Theorem 2 (DGS rule). Under conditions of The-
orem 1, suppose we run Algorithm 1 with the cost-
sensitive DGS criterion. Then, for T ≥ 3 and 0 < δ <
1/e, with probability 1− 2δ the regret is at most

RT = Õ

(
inf
ǫ>0

{
ǫTǫ + ψ(C,Φ)

d

ǫ
log

1

δ

})
,

For any ǫ > 0, with probability at least 1− δ, the num-
ber of queries made is at most

NT = Õ
(
Tǫ + ψ(C,Φ)

d2K

ǫ2

)

Observe that ǫ is a parameter of the algorithm in The-
orem 1, but a free parameter in Theorem 2. A few
remarks about these results are in order.

(a) We reiterate that the above results hold for an
arbitrary sequence xt, much like earlier results
on selective sampling (Orabona & Cesa-Bianchi,
2011). In order to interpret the results, we observe
that setting Tǫ = T and optimizing over ǫ yields
a regret of Õ(1/

√
T ) and Õ(NT )—recovering the

passive learning results. However, for nicer prob-
lems with Tǫ = o(T ) for ǫ small enough, we expect
strict improvements in label complexity.

(b) We expect a similar result to hold for an up-
date rule where we just do an Online New-
ton Step (Hazan et al., 2007) instead of our
current rule (9), by combining the techniques
of Gentile & Orabona (2012) with our results.

(c) An important assumption in the implementation
of Algorithm 1 is that we know the correct link
function in order to pick the right loss function.
This is currently a limitation of our theory, but
the algorithm is stable to small perturbations.
That is, if E[Y | x] is close to ∇Φ for some func-
tion Φ in a pointwise sense, then it suffices to use
the loss function defined by Φ.

In order to discuss concrete examples of the benefits
of active learning, we now focus on the setting of i.i.d.
x’s. In binary classification problems, one assumption
that helps to capture the benefits of active learning is
the Tsybakov noise condition (Tsybakov, 2004) which
governs the fraction of data that lies close to the classi-
fication boundary. We now describe a multiclass ver-
sion of this assumption, and then provide improved
regret guarantees under this assumption.

Assumption 4 (Multiclass Tsybakov noise condi-
tion). We say that a distribution P over R

d satisfies
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the multiclass Tsybakov noise condition with parame-
ters (ǫ0, α, c) for some ǫ0 > 0 and α ≥ 0 if for all
0 ≤ ǫ ≤ ǫ0,

P

(
SXW∗(y∗(X))− SXW∗(y

′

(X)) ≤ ǫ
)
≤ c ǫα.

In words, the fraction of points where the scores of
the best and the second best classes are within ǫ is at
most c ǫα. In the special case of 0/1 loss, this yields the
following more intuitive condition. For all 0 ≤ ǫ ≤ ǫ0,

P

(
(∇Φ(W ∗X))y∗(X) − (∇Φ(W ∗X))y′ (X) ≤ ǫ

)
≤ c ǫα.

That is, we control the fraction of points x where the
probabilities of the best and the second-best class are
closer than ǫ at a level cǫα. In particular, α = 0 is
a tautology for c = 1, while α → ∞ imposes a hard
margin of size ǫ0. This is analogous to controlling the
difference |P(y = 1 | x) − 0.5| in the binary case, and
provides the natural extension of the Tsybakov noise
condition from the binary classification case. An im-
mediate consequence of the assumption is that we ob-
tain Tǫ = Õ(Tǫα) for all ǫ ≤ ǫ0, both in expectation
and with high probability (Dekel et al., 2010). Under
the assumption, we can obtain the following simplified
corollaries of our earlier results.

Corollary 1. Under conditions of Theorem 2, assume
further that the covariate sequence is drawn i.i.d. ac-
cording to a distribution that satisfies Assumption 4.
Then with probability at least 1−2δ, the average regret
of Algorithm 1 with the DGS query criterion is at most

RT
T

= Õ

((
ψ(C,Φ)

d

T

) 1+α

2+α

)
.

With probability at least 1 − δ, the number of queries

is at most NT = Õ
(
T

2
2+α

(
ψ(C,Φ) d2K

) α

2+α

)
.

A similar result also holds for the BBQǫ query rule.
From the result, we can see that as α → ∞, NT ap-
proaches O(log T ) and the average regret approaches
O(1/T ), which is the best possible scaling in T even if
we query all T labels (Daniely et al., 2011). In order
to further understand the gains of active learning in
such low noise problems, it is instructive to study the
average regret as a function of the number of queries
made. Doing so, we obtain the following corollary.

Corollary 2. Under conditions of Corollary 1, we
have the following with probability at most 1− 2δ.

(a) For the BBQǫ rule with ǫ∗ =
(
dψ(C,Φ)

T

)1/(α+2)

,

assuming ǫ∗ ≤ ǫ0, the average regret satisfies
RT
T

= Õ

((
ψ(C,Φ)

d2K

NT

) 1+α

2

)
.

(b) For the DGS rule, the average regret satisfies
RT
T

= Õ

(
d

(1+α)2

(2+α) K
α(1+α)
2(2+α)

(ψ(C,Φ)
NT

) 1+α

2

)
,

assuming ǫ∗ ≤ ǫ0.

In terms of the scaling of the average regret with re-
spect to the number of queries, both the methods

achieve a guarantee of N
−

(1+α)
2

T , which is known to
be optimal under Assumption 4 in the binary classi-
fication setting (Castro & Nowak, 2008). In particu-
lar, as α → ∞, the average regret decays exponen-
tially in NT , meaning we query only O(log T ) labels.
This behavior is similar to the selective sampling al-
gorithms for binary classification (Dekel et al., 2010;
Orabona & Cesa-Bianchi, 2011). A crucial difference
between the two parts of the corollary is that while
BBQǫ needs knowledge of the noise level in setting the
parameter ǫ, the DGS query rule adapts to it.

4.2. Conclusions for specific cost matrices

In order to better understand our results, we now spe-
cialize to the case of specific cost matrices, providing
concrete values of σ2(C).

0/1 multiclass loss: In this special case, the cost
matrix takes the form (5). It is easy to check that the
parameter σ2(C) = 1− 1/K in this case.

This immediately yields bounds on regret and query
complexity for our algorithms in the multiclass 0/1
loss scenario, as corollaries of our Theorems. In order
to better understand the scalings with respect to the
dimension d and the number of classes K, we observe
from Corollary 1 that our regret bound takes the form

RT
T

= Õ

(
ǫ1+α +

dγ2u
γ2ℓ ǫT

)
= Õ

((
dγ2u
γ2ℓT

) 1+α

2+α

)
,

where the second equality optimizes for the best ǫ.
It might seem at the first glance that our rates are
completely independent ofK. However, that is not the
case in general. The condition number of the Hessian
introduced through the ratio γu/γℓ can often depend
on K (such as in Example 1). Understanding optimal
scalings with respect to d andK remains an interesting
question for future research.

Block structured cost matrix: We consider a sim-
ple version of the block-structured cost matrix example
illustrated in Fig. 1(a). Suppose that our cost matrix
consists of r blocks, each of size K/r. The cost matrix
is zero on the diagonal blocks corresponding to the
groups, and identically 1 on the off-diagonal blocks.
In this case, it is easily checked by a direct calcula-
tion that σ2(C) = K/r(1−1/r).We see that we do not
incur any substantial costs if we have a large number
of small, homogeneous groups. In contrast, a small
number of large, homogeneous groups can force an ad-
ditional factor of O(K) in our results. This not just an
artifact of our analysis, but seems like an actual prob-



Selective sampling algorithms for cost-sensitive multiclass prediction

lem case for Algorithm 1. For large groups, we still
estimate the probabilities for individual classes (to ex-
ploit the GLM assumption), but predict based on sum
of class probabilities over a large group which has an
error potentially larger by a factor of K/r.3

Tree structured cost matrix: This is the setting
illustrated in Fig. 1(b). We assume that our K classes
are arranged at the leaves of a tree. The cost of
misclassification is the tree distance between the two
classes. In this case, a direct calculation reveals that
σ2(C) = O(K). This is expected given our previous
example, since a tree can be thought of as having a
small number of large heterogeneous groups.

Overall, we see that in some cases where we can lever-
age the structure of the cost matrix, while in others we
cannot. It is our intuition that just structure on the
cost matrix is not sufficient to reduce the complexity of
the problem, without corresponding structure on the
weight matrix. When such a structure is present, we
expect our method to be able to leverage it through
the use of regularization, or using the set W.

4.3. A safety guarantee

Robustness to model mismatch is a crucial concern,
as the consequences of model mismatch can be quite
catastrophic in selective sampling. Our algorithm
learns over a biased subsample from the underlying
distribution and when our model is incorrect, the er-
ror we minimize over this biased subsample may no
longer reflect the error under the true distribution.4

Importance weighted algorithms (Beygelzimer et al.,
2009; 2010) do work with an unbiased distribution,
but the extent of label complexity savings from these
approaches in our setting—when minimizing a surro-
gate loss in a multiclass scenario—is not clear.

We now suggest a partial fix to model mismatch, by
querying an additional NT labels, whenever the algo-
rithm was going to query NT labels. The idea is to run
an independent passive learning algorithm on a purely
random subsample of size NT . Let us denote this sub-
sample by S and its size by N . This can be achieved,
for instance, by also querying the label of xt+1 when-
ever our algorithm recommends to query xt. We now
run a low-regret algorithm on S and measure its cu-
mulative prediction loss (in the surrogate loss (4)) on
this subsample. Let us denote the iterates generated in

3We suspect this is unavoidable using a GLM, unless
the weight matrix W ∗ has a structure aligned with the
cost matrix.

4This is also a problem with previous selective sampling
approaches.

this process by Ŵt. At the same time, we also measure
the prediction loss of our active learner on the subsam-
ple. Now standard arguments (such as those used in
the proof of Lemma 6 in the appendix) can be used to
guarantee that with probability at least 1− 4δ log T

0 ≤ 1

N

∑

i∈S

(Eℓ(Ŵi; (x, y))− min
W∈W

Eℓ(W ; (x, y))

≤ R1
ℓ

N
+ c

[
d

Nγℓ
log

(
R2γℓN

γ
+ 1

)
+

Rω

Nγℓ
log

1

δ

]
,

where R1
ℓ is the cumulative regret in the loss function

ℓ of the iterates Ŵi on the sample S. A similar claim
can also be made for the active learning algorithm,
replacing Ŵi by Wi and R

1
ℓ by R2

ℓ .

Based on these bounds, we now check the condition

R2
ℓ

N
≥ R1

ℓ

N
+ c

[
d

Nγℓ
log

(
R2γℓT

γ
+ 1

)
+

Rω

Nγℓ
log

1

δ

]
.

When this holds, we are guaranteed that the (average)
expected risk of our active learning iterates is larger
than that of the random subsampling approach. In
that case, we pick the solution resulting from random
subsampling. This guarantees that we never do worse
than a constant factor of random subsampling but can
still do much better when the model assumptions are
correct. We note that this is not a safeguard specific
to our method, and can be used with any sequential
active learning algorithm. Of course, having better
guarantees without our model assumptions is an active
area of research.

5. Numerical simulations

In this section, we describe results from some evalua-
tion of our algorithms on synthetic data. We evaluated
three query strategies: DGS, BBQ and Random. In all
our experiments, we generated i.i.d. x’s from a mixture
of Gaussians distribution in R

1000. We picked random
vectors as the means for each Gaussian, in a way that
ensured that the different clusters have a non-trivial
overlap in order to ensure adequate noise in the classi-
fication problem (details in the supplement). We also
setW ∗

i to the corresponding Gaussian means, and gen-
erated labels y according to our noise model (1). We
evaluated each query criterion for number of classes
K = 5 and K = 10. For each criterion, we picked
the parameters of the rule so that they query roughly
the same number of points. Note that the DGS
rule as stated is parameter-free, but we instead used
the DGS-MOD version of Orabona & Cesa-Bianchi
(2011), which allows a general multiplier on the RHS
of the rule (13). All our algorithms used the multiclass
logistic loss in the update rule (9). We used the 0/1
cost matrix in all our experiments.
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Figure 2. Plots showing the ratio of active to passive regret,
as a function of the number of queries (see text).

Figure 2 shows the results of our simulations forK = 5
and K = 10. In each case, we had a total of 10, 000
data points. We have plotted the ratio of the cumula-
tive regret from each approach to the regret attained
by passive learning on all 10, 000 samples. The re-
sults are averaged over 20 trials. In the plots, we show
the mean regret ratio and confidence intervals, at the
point on the X-axis which is the mean of the number
of queries with a particular parameter setting. We also
plot the individual points to give the reader an idea of
the spread in the number of queries as well as in the
regret ratio5. We observe that DGS rule does the best
in both the cases, beating even the passive learner with
a smaller query complexity! We speculate that this is
because training over fewer (but most informative) la-
beled samples is less prone to noise and yields better
generalization for our methods. We also note that the
strong performance of Random was somewhat surpris-
ing, even though DGS eventually outperforms it. We
believe that this is due to the fact that our simulated
data does not have a situation where there are only a
few informative points close to the boundary. That is
the kind of setting where a good active learning strat-
egy stands to gain the most over random subsampling.
Overall, we observe that our algorithms are indeed able
to attain a small regret ratio, even at a subsampling
level of 10% or 20%, which is certainly encouraging
and in line with the theoretical results.

As remarked in Section 4, model mismatch can be a
concern for our algorithms. To see the impact of this,
we did an experiment where the probability of class
i was proportional to (xTW ∗

i )
2, but we continued to

use the multiclass logistic loss. Figure 3 shows the
results of this experiment. While the relative regret
is now closer to random subsampling, we are still do-
ing no worse. This gives some reassurance about our
robustness to model perturbations, and it would be
interesting to do a detailed study in future work.

5Larger versions of these plots are in the supplement.
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Figure 3. Plot showing the ratio of active to passive regret, as a

function of the number of queries in a model mismatch scenario (see

text for details). While the regret ratio does not increase by much,

the actual regret was substantially higher than the correct model

case both for active and passive.

6. Discussion

In this paper, we present algorithms for selective sam-
pling in cost-sensitive multiclass classification. Our
algorithm and query criteria provide natural general-
izations of previous works in the binary setting. We
provide guarantees on the regret and label complex-
ity of our approach, under probabilistic assumptions
on the noise. We also introduce a notion of problem
hardness in form of the multiclass Tsybakov condition,
which provides a sufficient condition for active learn-
ing to gain over passive learning. Under this condition,
our label complexity gains can be as large as exponen-
tial, which mirrors the binary case.

There are several interesting avenues for future work,
some of which we outline here. As remarked earlier,
our algorithm admits an arbitrary convex constraint
set W, which can be allowed to add information re-
garding the problem structure, such as group norms or
low-rank structures (Harchaoui et al., 2012). It would
be interesting to study the impact of this structure,
both in theory and experiments. Another important
direction is to understand how the probabilistic as-
sumption can be relaxed further, without going to
computationally intractable algorithms. On a more
practical side, it seems natural to use approximations
to speed up the computation of the quadratic form
xTt M

−1
t xt, which seems to be the most computation-

ally expensive step for us.
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Supplementary material to the paper

Selective sampling algorithms for cost-sensitive multiclass prediction

A. Numerical simulation details

We have displayed enlarged versions of our earlier results in Figures 2 and 3 for an easier visualization of the
results. See Figures 4 and 5 for these plots.

We will now describe the details of our data generating procedure. As mentioned earlier, we used synthetic
data generated according to a mixture of Gaussians. Our intuition was to have each cluster roughly correspond
to one group, but with enough overlap so that there is adequate noise in the problem. We started by picking
Gaussian random vectors in R

1000 as our cluster means. However, due to concentration of measure, this gives
rise to means that are far apart, and nearly orthogonal. The resulting classification problems from such means
tended to be relatively noiseless and easy to solve with extremely few queries. To avoid this, we started by
generating Gaussian random vectors in 10 dimensions, with mean 0 and standard deviation I10×10/

√
10, so that

the means have roughly unit norm. We then apply a random rotation to these weights in order to embed them
into 1000 dimensions. For each sample, we first picked a mean vector uniformly at random from 1, 2, . . . ,K.
We then picked a random Gaussian vector with the mean as the selected cluster mean and standard deviation
(10/

√
1000)I1000×1000. We tried other multipliers on the variance as well, but the results were stable within a

reasonable range. As another robustness test, we added a certain fraction of random x vectors centered around
the origin with the same variance. Again, the results were found to be fairly stable to such changes. For each x,
we picked the label based on our generative model (1). As mentioned before, Figure 2 uses the exponential link
function for the multinomial logit model while Figure 3 uses P(Y = i | x) ∝ (xTW ∗

i )
2. It might appear curious

that the regret ratio has not gone up by much despite the model mismatch. While the ratio does seem fairly
stable, the actual regret was substantially higher in this case, both for active and passive learning.

B. Proofs of main results

We start by giving a high-level outline of our proof. As remarked earlier, our proofs rely on conditional probability
estimation. We start by formalizing this claim. Specifically, we provide two results in Proposition 1 and Lemma 2,
which capture the rate at which our weights and our predicted probabilities correspond to their true versions under
W ∗. At a high level, our Assumption 1 regarding the strong convexity of the link function is crucial for this part,
because otherwise we do not get good estimates of the weight matrix W ∗. Qualitatively, our estimation rates are
Õ(1/Nt) after we have made Nt queries. The next step is to relate the error in conditional probability estimation
with the regret under our cost-sensitive loss (14). While this cannot be done in general, we use our generative
model (1) to make this link. Specifically, following similar intuition in earlier works (Cesa-Bianchi et al., 2009;
Dekel et al., 2010), we discard all the Tǫ points which are too hard to resolve. On the remaining points, it is
rather easy to control the regret of the points where we query the labels by using properties of our update rule.
This intuition is formalized in Lemma 4. Everything up until this point is a property of the update rule (9) and
applies for all query criteria. The remaining step is to control the regret on the points where we issue no queries,
and this is where the query rule comes in. By design, it will turn out that we pay no regret on the points where
we do not query, and this part heavily exploits the small error in our conditional probability estimates. We also
provide bounds on the number of queries we make for our rules. The important intuition here is that all our
rules involve the quantity ‖xt‖M−1

t

, which decays suitably over time. By understanding how the decay of this

quantity relates with the tolerance ǫ below which we do not account for regret, we obtain bounds on our query
complexity.

10
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Figure 4. Plots showing the ratio of active to passive regret, as a function of the number of queries. Left panel shows
K = 5 and right panel shows K = 10.
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Figure 5. Plot showing the ratio of active to passive regret, as a function of the number of queries in a model mismatch
scenario. K = 10 in this experiment.
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We start with a proposition regarding the convergence of the weight matrix learned by Algorithm 1 to the
optimal weight matrix. Then we will state some important lemmas that will be used to establish our main
results, followed by the proofs of our theorems.

B.1. Convergence of weight matrices

In order to describe the results succinctly, we introduce the following notation for a positive definite matrix M

‖W‖2M =
K∑

i=1

‖Wi‖2M ,

as an extension of the Mahalanobis norm to matrices. It is clear that with this definition, for any vector x ∈ R
d

we have

‖Wx‖22 =

K∑

i=1

〈Wi, x〉2 ≤
K∑

i=1

‖Wi‖2M‖x‖2M−1 = ‖W‖2M‖x‖2M−1 . (19)

Proposition 1. Under Assumptions 1 and 2, the iterates of Algorithm 1 satisfy with probability 1− δ

‖Wt −W ∗‖Mt
≤ 2

γℓ

√
3 + 2 log

(
1 +

2R2γℓ
γ

)√
dK log t

√
log(dKt/δ) +

√
2γω2

γℓ
,

uniformly for all t = 1, 2, . . . , T .

Proposition 1 is a property of the update rule (9) and does not rely on the query conditions. The proof uses
standard techniques for the analysis of online convex optimization algorithms along with martingale concentra-
tion.

Proof of Proposition 1 By the definition of Wt, first-order optimality conditions for convex optimization
guarantee that

〈
γWt +

t−1∑

s=1

Zs∇ℓ(Wtxs, ys),W −Wt

〉
≥ 0, for all W ∈ W.

Recalling the definition (4) and using the optimality condition with W =W ∗, we obtain the condition

γ 〈Wt,W
∗ −Wt〉+

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s − ysx

T
s ,W

∗ −Wt

〉
≥ 0.

Let us define the shorthand ξs = ys −∇Φ(W ∗xs). Recall the definition of the sigma-field Fs which is generated
by x1 through xs, along with the observed y values up to round s − 1. Then it is clear that ξs is measurable
with respect to Fs+1. Furthermore, the definition (1) of our probabilistic model guarantees that E[ξs | Fs] = 0,
meaning that ξs is a martingale difference sequence adapted to the filtration {Fs+1}. In terms of this shorthand,
we can now rewrite the optimality condition as

γ 〈Wt,W
∗ −Wt〉+

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s −∇Φ(W ∗xs)x

T
s + ξsx

T
s ,W

∗ −Wt

〉
≥ 0.

Rearranging terms, we obtain
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t−1∑

s=1

Zs
〈
ξsx

T
s ,W

∗ −Wt

〉
≥

t−1∑

s=1

Zs
〈
∇Φ(Wtxs)x

T
s −∇Φ(W ∗xs)x

T
s ,Wt −W ∗

〉
+ γ 〈Wt,Wt −W ∗〉

=

t−1∑

s=1

Zs 〈∇Φ(Wtxs)−∇Φ(W ∗xs),Wtxs −W ∗xs〉+ γ 〈Wt,Wt −W ∗〉

≥ γℓ

t−1∑

s=1

Zs‖Wtxs −W ∗xs‖22 + γ‖Wt −W ∗‖22 + γ 〈W ∗,Wt −W ∗〉 ,

where the last inequality follows from the strong convexity Assumption 1. Recalling the definition of the matrix
Mt (7) as well as our boundedness Assumption 3, we can further simplify the above inequality to

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 ≥ γℓ‖Wt −W ∗‖2Mt
− 2γω2. (20)

We now focus on the right hand side of the inequality. Observe that

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 =
K∑

i=1

t−1∑

s=1

Zsξs,i
〈
W ∗
t,i −W i

t , xs
〉

≤
K∑

i=1

‖
t−1∑

s=1

Zsξs,ixs‖M−1
t

‖W ∗
t,i −W i

t ‖Mt
.

To control each term in the sum, we use a tail inequality for vector-valued martingales from Fillipi et
al. (Filippi et al., 2010). In particular, invoking Lemma 1 in the Appendix A.1 of the paper with constants
cm = R, λ0 = γ/γℓ and R = 2 yields for any 0 < δ < 1/e and t ≥ 2 the following bound with probability at least
1− δ/K

‖
t−1∑

s=1

Zsξs,ixs‖M−1
t

≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
d log t

√
log(dK/δ),

for all i = 1, 2, . . . ,K. Taking a union bound over all the classes yields with probability at least 1− δ

t−1∑

s=1

Zs 〈ξs,W ∗xs −Wtxs〉 ≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
d log t

√
log(dK/δ)

K∑

i=1

‖W ∗
t,i −W i

t ‖Mt

≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
dK log t

√
log(dK/δ)‖W ∗ −Wt‖Mt

,

where the final inequality follows from the definition of ‖W ∗ −Wt‖Mt
and the fact

∑K
i=1 ai ≤

√
K
√∑K

i=1 a
2
i for

ai ≥ 0. Plugging the above inequality in our earlier bound (20), we have shown that with probability at least
1− δ

γℓ‖Wt −W ∗‖2Mt
≤ 2
√

3 + 2 log(1 + 2R2γℓ/γ)
√
dK log t

√
log(dK/δ)‖W ∗ −Wt‖Mt

+ 2γω2.

We can now solve the quadratic inequality to obtain a high probability upper bound on ‖Wt−W ∗‖. Rearranging
terms, and taking another union bound over the rounds t = 1, 2, . . . , T completes the proof.
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We conclude the section with a technical lemma which is in a similar vein as Proposition 1, and will be needed
for some of our following proofs.

Lemma 2. Under conditions of Theorem 1, with probability at least 1− 4δ log T for some 0 < δ < 1/e and for
T ≥ 3, we have

T∑

t=1

Zt‖Wtxt −W ∗xt‖22 ≤ 8d(γℓ + γ)

γ2ℓ γ
log

(
R2γℓT

γ
+ 1

)
+

112Rω

γ2ℓ
log

1

δ
.

The key difference between the lemma and Proposition 1 is that the proposition gives a bound on the error
in weight matrices, which immediately allows us to bound the error in predictions on any future data point.
In contrast, Lemma 2 only concerns with bounding the sums of errors in predictions over the data points the
algorithm actually queries. However, doing so allows us to get bounds that are sharper in factors of d and K in
some applications of the result. The proof of this lemma is somewhat involved, and is deferred until the end.
For now, we proceed with proving our main theorems, which requires a better understanding of the regret (14).

B.2. A useful regret decomposition

In the following results, we assume that both the above high-probability upper bounds hold deterministically,
and bound the probability of error at the very end. We will now present a series of lemmas that provide
a decomposition for the multiclass classification loss. The results can be seen as analogues of previous such
decompositions in the binary case (Cesa-Bianchi et al., 2009; Dekel et al., 2010), but the techniques involved are
somewhat different in the multiclass setting. Before stating the results, we recall our earlier definitions (10). We
also recall the definition of the σ-field Ft = σ{x1, . . . , xt, ys : 1 ≤ s < t, Zs = 1}. Our results will involve the
previously definition notation Tǫ (15).

Lemma 3. For any ǫ ∈ [0, 1], we have the following

T∑

t=1

(E[C(y, ŷt) | Ft]− E[C(y, y∗t ) | Ft]) = ǫTǫ + T 1
T,ǫ + T 2

T,ǫ,

where

T 1
T,ǫ =

T∑

t=1

(1− Zt)11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxr

W∗(ŷt)), and

T 2
T,ǫ =

T∑

t=1

Zt11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt)) (21)

Proof. From the definition (6), we see that the regret in the expected costs is directly linked with the score
function since

T∑

t=1

(E[C(y, ŷt) | Ft]− E[C(y, y∗t ) | Ft]) =
T∑

t=1

Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt).

Here we used the fact that
∑K
i=1(∇Φ(W ∗x))i = 1, so that the additive term Cmax in the definition of

score function cancels in the definition of the regret. We now break up our analysis over the rounds where
0 < Sxt

W∗(y∗t )− Sxt

W∗(ŷt) ≤ ǫ and where it is greater than ǫ. On the first case, the expected regret is clearly at
most ǫ. Furthermore, the number of such rounds is at most Tǫ. This is because either we have S

xt

W∗(ŷt) = Sxt

W∗(y∗t ),
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in which case we incur no regret or we should have Sxt

W∗(ŷt) ≥ Sxt

W∗(y
′

t). Hence, we are guaranteed to have the

scores of y
′

t and y
∗
t within ǫ if the scores of ŷt and y

∗
t are unequal but within ǫ. Recalling the definition (15), this

yields the first term in our decomposition.

The second and third terms result simply from further breaking our analysis over rounds where we do not query
and query respectively. This completes the proof of the lemma.

We next tackle T 2
T,ǫ in our decomposition above. This term is incurred on the rounds where we make queries,

and will be identical for all of our query rules. The impact of the specific query rules is only on T 1
T,ǫ, that is on

guaranteeing small regret on rounds where we do not query. Recall that we are still assuming that the bound of
Lemma 2 holds deterministically in this lemma.

Lemma 4.

T 2
T,ǫ ≤

32σ2(C)γ2u(γℓ + γ)

γ2ℓ γǫ
d log

(
R2γℓT

γ
+ 1

)
+

448γ2uσ
2(C)

γ2ℓ ǫ
log

1

δ
.

Proof. We begin by observing that under the conditions of the decomposition, we have that

T 2
T,ǫ =

T∑

t=1

Zt11 {Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} (Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt))

≤
T∑

t=1

Zt
(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ
.

Furthermore, by the definitions (10), we have that

Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t ) ≥ 0.

Hence, we can conclude that

0 ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) + Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t ).

Since both sides are non-negative, we can square to futher obtain

(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ

≤

(
Sxt

W∗(y∗t )− Sxt

W∗(ŷt) + Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t )
)2

ǫ

≤ 2
(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
+ 2

(Sxt

W∗(ŷt)− Sxt

W
t

(ŷt))
2

ǫ
. (22)

We focus on the first term above, since the treatment for the second is identical. To do so, we now unwrap the
definition of the score function and observe that

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(Cmax − C(j, y∗t ))

)2

ǫ

=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(−C(j, y∗t ))

)2

ǫ
,



Selective sampling algorithms for cost-sensitive multiclass prediction

where the second equality follows since
∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j) = 0. To proceed further, we recall

our earlier notation C̄i =
∑K
j=1 C(j, i)/K. Since the above inequality is invariant to any translation of the costs

involving class y∗t by a constant independent, of j, we further obtain

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
=

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)(C̄y∗t − C(j, y∗t ))

)2

ǫ

≤

(∑K
j=1((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

2
)(∑K

j=1(C̄y∗t − C(j, y∗t ))
2
)

ǫ
,

where the inequality is a consequence of Cauchy-Shwartz inequality. We can further use Lipschitz continuity of
∇Φ to obtain

(Sxt

W∗(y∗t )− Sxt

W
t

(y∗t ))
2

ǫ
≤ γ2u

ǫ
‖W ∗xt −Wtxt‖22‖C̄y∗t − Cy∗

t
‖22

≤ γ2u
ǫ

‖W ∗xt −Wtxt‖22σ2(C),

where we obtain the last step by recalling the definition (16) of σ2(C). Since the same bound also holds for the
differences in scores on ŷt, we can plug the above bound into our earlier inequality (22) and obtain

(Sxt

W∗(y∗t )− Sxt

W∗(ŷt))
2

ǫ
≤ 4

γ2uσ
2(C)

ǫ
‖W ∗xt −Wtxt‖22.

Summing the bound over all the queried rounds and invoking Lemma 2 completes the proof.

B.3. Proofs of Theorems 1 and 2

We are now in a position to prove our main results. In both the theorems, it only remains to control the term
T 1
T,ǫ given our work so far. As we will see, both the query criteria BBQǫ and DGS are designed so that this term

will actually be zero. The second part of the proof consists of bounding the number of queries. This turns out
to be rather straightforward for the BBQǫ rule, but significantly more involved for the DGS rule.

Proof of Theorem 1 We focus on the regret, which requires us to understand T 1
T,ǫ. To this end, we note

that from the proof of Lemma 4, we have

Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(ŷt)− Sxt

W
t

(y∗t ) + Sxt

W
t

(ŷt)

=

K∑

j=1

(C̄y∗
t
− C(j, y∗t ))((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

−
K∑

j=1

(C̄ŷt − C(j, ŷt))((∇Φ(W ∗xt))j − (∇Φ(Wtxt))j)

≤ 2σ(C) γu‖Wtxt −W ∗xt‖2.

For the BBQǫ query criterion, the above term is at most ǫ when we do not query the label yt. Consequently, we
incur regret only if Sxt

W∗(y∗t )− Sxt

W∗(ŷt) ≤ ǫ. Since this quantity is guaranteed to be at least ǫ on the summands
in T 1

T,ǫ, we see that either Zt = 0 or the indicator of the event in T 1
T,ǫ is zero. As a result, T 1

T,ǫ = 0, which
completes the proof of the regret bound.
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As for the bound on the number of queries, proceed similarly as the earlier analysis of Cesa-Bianchi et
al. (Cesa-Bianchi et al., 2009). We observe that by the query condition, we have

NT =
∑

t : 4σ2(C)γ2
u
θ2
t
‖xt‖2

M
−1
t

≥ǫ2

1 ≤
∑

t : 4σ2(C)γ2
u
θ2
t
‖xt‖2

M
−1
t

≥ǫ2

4σ2(C)γ2uθ
2
t ‖xt‖2M−1

t

ǫ2

≤ 4σ2(C)γ2uθ
2
T

ǫ2

T∑

t=1

Zt‖xt‖2M−1
t

.

Further applying Lemma 5 from the appendix completes the proof of the theorem.

We now establish the result for the DGS selection rule

Proof of Theorem 2 The proof relies on the following observation which is a consequence of the definition (6)
and the Lipschitz continuity of the mapping ∇Φ from Assumption 2

|Sxt

W∗(i)− Sxt

W
t

(i)| ≤ σ(C)γu ‖Wtxt −W ∗xt‖2 ≤ σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

, (23)

for all i = 1, 2, . . . ,K. Now let us suppose that on a round t, we have that Sxt

W∗(ŷt) < Sxt

W∗(y∗t ). Then using the
above bound, we see that

0 > Sxt

W∗(ŷt)− Sxt

W∗(y
∗
t ) ≥ Sxt

W
t

(ŷt)− Sxt

W
t

(y∗t )− 2σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

≥ Sxt

W
t

(ŷt)− Sxt

W
t

(y
′′

t )− 2σ(C)γu ‖Wt −W ∗‖Mt
‖xt‖M−1

t

≥ 0,

on the rounds where we do not query. Hence, we have a contradiction unless Sxt

W∗(ŷt) − Sxt

W∗(y∗t ) ≤ 0 on the
rounds where we do not query, meaning that T 1

T,ǫ is zero once again. This completes the proof of the regret
bound.

The proof of the query bound is a little more involved in this case. We break up our analysis over the cases
where ŷt = y∗t and the ones where they disagree. Starting with the latter, we see that for any ǫ > 0 we have

T∑

t=1

Zt11 {ŷt 6= y∗t } =

T∑

t=1

Zt (11 {ŷt 6= y∗t , (S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≤ ǫ}

+ 11 {ŷt 6= y∗t , S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ})

≤
T∑

t=1

Zt11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}

+

T∑

t=1

Zt11 {ŷt 6= y∗t , S
xt

W∗(y
∗
t )− Sxt

W∗(ŷt) ≥ ǫ} . (24)

We focus on controlling the second sum, which can be done by invoking Equation 23 twice, once with i = y∗t and
once with i = ŷt. Since S

xt

W
t

(ŷt) ≥ Sxt

W
t

(y∗t ), we obtain the upper bound

Sxt

W∗(ŷt) ≤ Sxt

W∗(y
∗
t ) ≤ Sxt

W∗(ŷt) + 2σ(C)γuθt‖xt‖M−1
t

. (25)

Combining this with our earlier upper bound (24), we further obtain
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T∑

t=1

Zt11 {ŷt 6= y∗t } ≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11
{
ŷt 6= y∗t , 2σ(C)γuθt‖xt‖M−1

t

≥ ǫ
}

≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt 6= y∗t }
4σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
. (26)

We now analyze the other case where ŷt = y∗t . In this case, our query condition guarantees that

T∑

t=1

Zt11 {ŷt = y∗t } =

T∑

t=1

11
{
ŷt = y∗t , S

xt

W
t

(ŷt)− Sxt

W
t

(y
′′

t ) ≤ 2σ(C)γu θt‖xt‖M−1
t

}

=

T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W
t

(y∗t )− Sxt

W
t

(y
′′

t ) ≤ 2σ(C)γu θt‖xt‖M−1
t

}

(∗)

≤
T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W
t

(y∗t )− Sxt

W
t

(y
′′

t ) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

Zt11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}

+

T∑

t=1

Zt11
{
ŷt = y∗t , ǫ ≤ Sxt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ 4σ(C)γu θt‖xt‖M−1
t

}

≤
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− St

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt = y∗t }
16σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
.

In the above display, the inequality (∗) follows from using Proposition 1 to establish the closeness of Sxt

W
t

(i) and

Sxt

W∗(i) for i = y∗t and i = y
′

t. Adding this to our earlier bound (26), we obtain the bound on the number of
queries as

NT =
T∑

t=1

Zt =
T∑

t=1

Zt11 {ŷt 6= y∗t }+
T∑

t=1

Zt11 {ŷt = y∗t }

≤
T∑

t=1

11
{
ŷt 6= y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt 6= y∗t }
4σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2

+
T∑

t=1

11
{
ŷt = y∗t , S

xt

W∗(y
∗
t )− Sxt

W∗(y
′

t) ≤ ǫ
}
+

T∑

t=1

Zt11 {ŷt = y∗t }
16σ2(C)γ2uθ

2
t ‖xt‖2M−1

t

ǫ2

≤ Tǫ +

T∑

t=1

Zt
16γ2uθ

2
t ‖xt‖2M−1

t

ǫ2
.

Finally, invoking Lemma 5 completes the proof.
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C. Proof of Lemma 1

Proof of Lemma 1

The proof follows almost directly from the definitions. Suppose we were to predict a class i for a given data
point i. Recalling our notation Cmax = maxa,b C(a, b), the expected loss incurred is

K∑

j=1

P(Y = j | x)C(j, i) =
K∑

j=1

(∇Φ(W ∗x))jC(j, i) =

K∑

j=1

(∇Φ(W ∗x))j(C(j, i)− Cmax) + Cmax,

where the last equality follows since
∑
j(∇Φ(W ∗x))j = 1. The above quantity is easily seen to be Cmax−SxW∗(i).

Hence, picking the class maximizing SxW∗ minimizes the expected loss pointwise, meaning that it is the Bayes
optimal prediction.

D. Auxiliary results for Theorems 1 and 2

In this appendix, we collect many auxiliary technical results and proofs that are used throughout the paper in
our proofs.

D.1. Sums of quadratic forms

We start with a simple lemma. The lemma is an adaptation of Lemma 11 in Hazan et al. (2007). Our statement
is slightly different since our matrices are off by one time index, as opposed to theirs.

Lemma 5.
T∑

t=1

Zt‖xt‖2M−1
t

≤ γℓ + γ

γ
d log

(
R2γℓT

γ
+ 1

)

Proof. The proof is a slight adaptation of Lemma 11 from Hazan et al. (2007). Note that invoking Lemma 11
from that paper, we can conclude that

T∑

t=1

Zt‖xt‖2M−1
t+1

≤ d log

(
R2γℓT

γ
+ 1

)
.

Also observe that using the Sherman-Morrison-Woodbury matrix identity, we have that

Zt‖xt‖2M−1
t+1

= Ztx
T
t M

−1
t+1xt

= (Ztxt)
T (Mt + Ztxtx

T
t )

−1(Ztxt)

= Zt‖xt‖2M−1
t

− Ztx
T
t

(
M−1
t xtx

T
t M

−1
t

1 + xTt M
−1
t xt

)
xt

= Zt

(
‖xt‖2M−1

t

−
‖xt‖4M−1

t

1 + ‖xt‖2M−1
t

)

= Zt
‖xt‖2M−1

t

1 + ‖xt‖2M−1
t

.

Rearranging terms, we obtain
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Zt‖xt‖2M−1
t

= Zt

‖xt‖2M−1
t+1

1− ‖xt‖2M−1
t+1

≤ Zt
γℓ + γ

γ
‖xt‖2M−1

t+1

.

Here the last inequality follows since Zt‖xt‖2M−1
t+1

≤ 1
1+γ/γℓ

. Combining these facts yields the statement of the

lemma.

D.2. Proof of Lemma 2

In order to prove the lemma, we will need a couple of additional technical results that we state next. The first
is a martingale convergence result, which will allow us to relate the LHS of Lemma 2 with the surrogate loss 4
incurred by our algorithm. The next result bounds precisely this surrogate loss. We begin with the martingale
result.

Lemma 6. Suppose that the labels are generated according to the probabilistic model (1) and Assumption 3 holds.
Then for any 0 < δ < 1/e and T ≥ 3, with probability at least 1− 4δ log(T ) we have the following bound

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) ≤ 2

T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)) +
56Rω

γℓ
log

1

δ
.

The next lemma concerns the surrogate loss regret of the update rule (9). In terms of the online learning
literature, the update rule is what is often called the follow the leader strategy. While the proof technique
for bounding the regret of this strategy under our assumptions is quite standard (Kalai & Vempala, 2005), we
include a proof for completeness.

Lemma 7.
T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt))) ≤
4(1 + γ) d

γℓγ
log

(
R2γℓT

γ
+ 1

)

We now prove Lemma 2 using the above results. We provide the proofs of Lemma 6 and 7 following that.

Proof of Lemma 2 The proof proceeds by relating the squared deviation ‖W ∗xt −Wtxt‖22 to the Bregman
divergence of the function Φ under Assumptions 1 and 2. For a convex function f , the Bregman divergence,
denoted by Df (u, v) is the difference between the function f and its first-order Taylor approximation. More
formally,

Df (u, v) = f(u)− f(v)− 〈∇f(v), u− v〉 .

It is easily seen that Assumptions 1 and 2 correspond to quadratic lower and upper bounds respectively on the
Bregman divergence of Φ. That is,

γℓ
2
‖u− v‖22 ≤ DΦ(u, v) ≤

γu
2
‖u− v‖22, for all u, v ∈ S. (27)

In our current context, we use Assumption 1 to conclude

T∑

t=1

Zt‖W ∗xt −Wtxt‖22 ≤ 2

γℓ

T∑

t=1

ZtDΦ(Wtxt,W
∗xt)
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The above inequality allows us to invoke Lemmas 6 and 7 in turn which completes the proof.

Proof of Lemma 6 Consider the random variable

νt = Zt [DΦ(Wtxt,W
∗xt)− (ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)))] .

In order for our proof, it will be convenient to work with the simplified form of the random variable obtained by
using the definition (4) of the loss function.

νt = Zt [DΦ(Wtxt,W
∗xt)− (ℓ(Wt; (xt, yt))− ℓ(W ∗; (xt, yt)))]

= Zt
[
DΦ(Wtxt,W

∗xt)− (Φ(Wtxt)− yTt Wtxt − Φ(W ∗xt)− yTt W
∗xt)

]

= Zt
[
Φ(Wtxt)− Φ(W ∗xt)− 〈∇Φ(W ∗xt),Wtxt −W ∗xt〉 − (Φ(Wtxt)− yTt Wtxt − Φ(W ∗xt)− yTt W

∗xt)
]

= Zt 〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉 . (28)

Here the second equality uses the definition of the Bregman divergence. Now recalling our earlier definition of
the σ-fields Ft, it is clear that νt is measurable with respect to Ft+1. Furthermore, its conditional expectation
conditioned on Ft is zero, since Wt, Zt and xt are measurable with respect to Ft and E[yt | Ft] = ∇Φ(W ∗xt).
Hence the sequence νt is a martingale difference sequence with respect to the filtration Ft. In order to prove
the lemma, we just need to show that this sequence concentrates around its expectation. We do so by appealing
to a form of Freedman’s inequality (Freedman, 1975) presented in Kakade & Tewari (2009). In order to use the
result, we need bounds on the value and the conditional variance of the random variable νt. We start with the
bound on the value. Based on Equation 28, we have

|νt| ≤ | 〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉 |
≤ ‖yt −∇Φ(W ∗xt)‖1‖Wtxt −W ∗xt‖∞
≤ 2(2Rω).

Here the last inequality follows since yt is a canonical basis vector, ∇Φ(W ∗xt) is a probability distribution over
R
K and xTt W

i
t as well as x

T
t W

∗
i are bounded by Rω for i = 1, 2, . . . ,K by Assumption 3. Hence we have obtained

the upper bound

|νt| ≤ 4Rω. (29)

Reasoning similarly for the conditional variance, we observe that

E[ν2t | Ft] ≤ ZtE
[
〈yt −∇Φ(W ∗xt),Wtxt −W ∗xt〉2 | Ft

]

≤ 4Zt‖Wtxt −W ∗xt‖2∞
≤ 4Zt‖Wtxt −W ∗xt‖22
≤ 8

γℓ
ZtDΦ(Wtxt,W

∗xt).

Now we appeal to Lemma 3 of Kakade & Tewari (2009), which yields for any δ < 1/e and T ≥ 3, with probability
at least 1− 4δ log(T )
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T∑

t=1

νt ≤ max



2

√√√√
T∑

t=1

8

γℓ
ZtDΦ(Wtxt,W

∗xt), 12Rω
√
log(1/δ)




√
log(1/δ)

≤ 4

√√√√ 2

γℓ

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) log

1

δ
+ 12Rω log

1

δ

≤ 1

2

T∑

t=1

ZtDΦ(Wtxt,W
∗xt) +

(
12Rω +

16

γℓ

)
log

1

δ
,

where the last inequality follows by Cauchy-Shwartz inequality. Recalling the definition of νt and our assump-
tions that Rω ≥ 1 as well as γℓ ≤ 1 completes the proof.

Proof of Lemma 7 We follow the proof technique, which is an inductive argument introduced
by Kalai & Vempala (2005). The proof reasons via an auxiliary sequence of fictitious iterates:

W̃t+1 = arg min
W∈W

{
t+1∑

s=1

Zsℓ(Wxs, ys) + γ‖W‖2F

}
. (30)

The main idea is that W̃t is an iterate sequence which cannot be played by the algorithm, since it relies on the
unknown data point (xt, yt). However, it turns out that our iterates Wt are not too different from W̃t, and the
sequence W̃t has a low regret since it can see the data point (xt, yt) at which the regret is measured. The second
claim can be found, for example, in Lemma 2.1 of Shalev-Shwartz (2012). That is, we are guaranteed that

T∑

t=1

Zt(ℓ(W̃t; (xt, yt))− ℓ(W ∗; (xt, yt))) ≤ 0.

Hence we focus on showing the closeness of the two sequences. Taking the optimality conditions for Wt and W̃t,
we see that

〈
t−1∑

s=1

Zs(∇Φ(Wtxs)
Txs − yTs xs) + γWt, W̃t −Wt

〉
≥ 0

〈
t∑

s=1

Zs(∇Φ(W̃txs)
Txs − yTs xs) + γW̃t,Wt − W̃t

〉
≥ 0.

Adding the two inequalities, and rearranging we obtain

t−1∑

s=1

Zs

〈
∇Φ(Wtxs)−∇Φ(W̃txs), W̃txs −Wtxs

〉
+ Zt

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
− γ‖Wt − W̃t‖2F ≥ 0.

By Assumption 2, the above inequality further yields

Zt

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
≥ γℓ Zs

t−1∑

s=1

‖W̃txs −Wtxs‖22 + γ‖Wt − W̃t‖2F

= γℓ ‖Wt − W̃t‖M2
t
,



Selective sampling algorithms for cost-sensitive multiclass prediction

where the last line uses the definition (7) ofMt. On the other hand, since ∇Φ(W̃txt) is a probability distribution
over RK and yt is a canonical basis vector, we can also conclude

〈
∇Φ(W̃txt)− yt,Wtxt − W̃txt

〉
≤ ‖∇Φ(W̃txt)− yt‖1‖Wtxt − W̃txt‖∞
≤ 2‖Wtxt − W̃txt‖2
≤ 2‖Wt − W̃t‖Mt

‖xt‖M−1
t

.

Combining the above two displays finally yields the desired inequality

‖Wt − W̃t‖Mt
≤ 2Zt

γℓ
‖xt‖M−1

t

.

We are almost done now. All we need is to bound the difference between the regret of Wt and W̃t by using the
above inequality. This will be done by exploiting the Lipschitz property of our loss function. We observe that
we have

T∑

t=1

Zt(ℓ(Wt; (xt, yt))− ℓ(W̃t; (xt, yt))) =

T∑

t=1

Zt(Φ(Wtxt)− yTt Wtxt − Φ(W̃txt)− yTt W̃txt)

≤
T∑

t=1

Zt

〈
∇Φ(Wtxt)

Txt − yTt xt,Wt − W̃t

〉

=

T∑

t=1

Zt

〈
∇Φ(Wtxt)− yt,Wtxt − W̃txt

〉

≤
T∑

t=1

Zt 2‖Wtxt − W̃txt‖2

≤
T∑

t=1

4Zt
γℓ

‖xt‖2M−1
t

.

Appealing to Lemma 5 completes the proof.
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